One-Dimensional Topological Insulators
M. Rizwan, T. Hashmi, A. Ayub
One-dimensional topological insulators have garnered quite a lot of attention in recent times. These topological insulators (TIs) are crucial in the comprehension of topological properties. This chapter provides a very detailed and comprehensive overview of these astonishing materials. From history, classification based on symmetry, Dirac points, and dimensions, generations such as 1st, 2nd, and higher order TIs, synthesis techniques such as physical vapor deposition, chemical vapor deposition, 2D, 3D Tis and future models of these topological insulators, all are deliberated in detail. Future aspects are discussed as well, this chapter is composed to fully enlighten the reader on these 1D topological insulators.
Keywords
Spin-Polarized Electrons, 1D Topological Insulators, Physical Vapor Deposition, Time-Reversal Symmetry, Photonic Topological Insulators
Published online 12/15/2023, 26 pages
Citation: M. Rizwan, T. Hashmi, A. Ayub, One-Dimensional Topological Insulators, Materials Research Foundations, Vol. 154, pp 21-46, 2024
DOI: https://doi.org/10.21741/9781644902851-2
Part of the book on Topological Insulators
References
[1] J. Moore, The next generation, Nature Physics 5 (2009) 378-380. https://doi.org/10.1038/nphys1294
[2] B.A. Bernevig, S.C. Zhang, Quantum spin Hall effect, Physical Review Letters 96 (2006) 106802. https://doi.org/10.1103/PhysRevLett.96.106802
[3] H. Beidenkopf, P. Roushan, J. Seo, L. Gorman, I. Drozdov, Y.S. Hor, R.J. Cava, A. Yazdani, Spatial fluctuations of helical Dirac fermions on the surface of topological insulators, Nature Physics 7 (2011) 939-943. https://doi.org/10.1038/nphys2108
[4] Z. Zhu, Y. Cheng, U. Schwingenschlögl, Band inversion mechanism in topological insulators: A guideline for materials design, Physical Review B 85 (2012) 235401. https://doi.org/10.1103/PhysRevB.85.235401
[5] X.L. Qi, S.C. Zhang, Topological insulators and superconductors, Reviews of Modern Physics 83 (2011) 1057. https://doi.org/10.1103/RevModPhys.83.1057
[6] O. Pankratov, Electronic properties of band-inverted heterojunctions: Supersymmetry in narrow-gap semiconductors, Semiconductor Science and Technology 5 (1990) S204. https://doi.org/10.1088/0268-1242/5/3S/045
[7] M. Konig, S. Wiedmann, C. Brune, A. Roth, H. Buhmann, L.W. Molenkamp, X.L. Qi, S.C. Zhang, Quantum spin Hall insulator state in HgTe quantum wells, Science 318 (2007) 766-770. https://doi.org/10.1126/science.1148047
[8] W. Tian, W. Yu, J. Shi, Y. Wang, The property, preparation, and application of topological insulators: A review, Materials 10 (2017) 814. https://doi.org/10.3390/ma10070814
[9] D. Hsieh, Y. Xia, D. Qian, L. Wray, J. Dil, F. Meier, J. Osterwalder, L. Patthey, J. Checkelsky, N.P. Ong, A tunable topological insulator in the spin helical Dirac transport regime, Nature 460 (2009) 1101-1105. https://doi.org/10.1038/nature08234
[10] X.L. Qi, S.C. Zhang, The quantum spin Hall effect and topological insulators, arXiv preprint arXiv:1001.1602 (2010).
[11] A.P. Schnyder, S. Ryu, A. Furusaki, A.W. Ludwig, Classification of topological insulators and superconductors, AIP Conference Proceedings, American Institute of Physics, pp. 10-21, 2009. https://doi.org/10.1063/1.3149481
[12] Y. Xue, H. Huan, B. Zhao, Y. Luo, Z. Zhang, Z. Yang, Higher-order topological insulators in two-dimensional Dirac materials, Physical Review Research 3 (2021) L042044. https://doi.org/10.1103/PhysRevResearch.3.L042044
[13] D. Kong, J.C. Randel, H. Peng, J.J. Cha, S. Meister, K. Lai, Y. Chen, Z.X. Shen, H.C. Manoharan, Y. Cui, Topological insulator nanowires and nanoribbons, Nano Letters 10 (2010) 329-333. https://doi.org/10.1021/nl903663a
[14] S.S. Hong, W. Kundhikanjana, J.J. Cha, K. Lai, D. Kong, S. Meister, M.A. Kelly, Z.X. Shen, Y. Cui, Ultrathin topological insulator Bi2Se3 nanoribbons exfoliated by atomic force microscopy, Nano Letters 10 (2010) 3118-3122. https://doi.org/10.1021/nl101884h
[15] X. Chen, X.C. Ma, K. He, J.F. Jia, Q.K. Xue, Molecular beam epitaxial growth of topological insulators, Advanced Materials 23 (2011) 1162-1165. https://doi.org/10.1002/adma.201003855
[16] M. Liu, F.Y. Liu, B.Y. Man, D. Bi, X.Y. Xu, Multi-layered nanostructure Bi2Se3 grown by chemical vapor deposition in the selenium-rich atmosphere, Applied surface science 317 (2014) 257-261. https://doi.org/10.1016/j.apsusc.2014.08.103
[17] V.S. Stolyarov, D.S. Yakovlev, S.N. Kozlov, O.V. Skryabina, D.S. Lvov, A.I. Gumarov, O.V. Emelyanova, P.S. Dzhumaev, I.V. Shchetinin, R.A. Hovhannisyan, Josephson current mediated by ballistic topological states in Bi2Te2.3Se0.7 single nanocrystals, Communications Materials 1 (2020) 38. https://doi.org/10.1038/s43246-020-0037-y
[18] S. Panahiyan, S. Fritzsche, Toward simulation of topological phenomena with one-, two-, and three-dimensional quantum walks, Physical Review A 103 (2021) 012201. https://doi.org/10.1103/PhysRevA.103.012201
[19] W. Zhang, R. Yu, H.J. Zhang, X. Dai, Z. Fang, First-principles studies of the three-dimensional strong topological insulators Bi2Te3, Bi2Se3 and Sb2Te3, New Journal of Physics 12 (2010) 065013. https://doi.org/10.1088/1367-2630/12/6/065013
[20] D. Hsieh, Y. Xia, D. Qian, L. Wray, F. Meier, J. Dil, J. Osterwalder, L. Patthey, A. Fedorov, H. Lin, Observation of time-reversal-protected single-Dirac-cone topological-insulator states in Bi2Te3 and Sb2Te3, Physical Review Letters 103 (2009) 146401. https://doi.org/10.1103/PhysRevLett.103.146401
[21] M.Z. Hasan, J.E. Moore, Three-dimensional topological insulators, Annual Review Condensed Matter Physics 2 (2011) 55-78. https://doi.org/10.1146/annurev-conmatphys-062910-140432
[22] Y. Ando, Topological insulator materials, Journal of the Physical Society of Japan 82 (2013) 102001. https://doi.org/10.7566/JPSJ.82.102001
[23] H.J. Noh, H. Koh, S.J. Oh, J.H. Park, H.D. Kim, J. Rameau, T. Valla, T. Kidd, P. Johnson, Y. Hu, Spin-orbit interaction effect in the electronic structure of Bi2Te3 observed by angle-resolved photoemission spectroscopy, Europhysics Letters 81 (2008) 57006. https://doi.org/10.1209/0295-5075/81/57006
[24] M. Geier, L. Trifunovic, M. Hoskam, P.W. Brouwer, Second-order topological insulators and superconductors with an order-two crystalline symmetry, Physical Review B 97 (2018) 205135. https://doi.org/10.1103/PhysRevB.97.205135
[25] M. Khazali, Discrete-time quantum-walk & Floquet topological insulators via distance-selective Rydberg-interaction, Quantum 6 (2022) 664. https://doi.org/10.22331/q-2022-03-03-664
[26] S.T. Pi, H. Wang, J. Kim, R. Wu, Y.K. Wang, C.K. Lu, New class of 3D topological insulator in double perovskite, The Journal of Physical Chemistry Letters 8 (2017) 332-339. https://doi.org/10.1021/acs.jpclett.6b02860
[27] W.P. Su, J. Schrieffer, A.J. Heeger, Solitons in polyacetylene, Physical Review Letters 42 (1979) 1698. https://doi.org/10.1103/PhysRevLett.42.1698
[28] R. Shankar, Topological insulators-A review, arXiv preprint arXiv:1804.06471 (2018).
[29] R. Jackiw, C. Rebbi, Solitons with fermion number ½, Physical Review D 13 (1976) 3398. https://doi.org/10.1103/PhysRevD.13.3398
[30] L. Li, S. Gunasekaran, Y. Wei, C. Nuckolls, L. Venkataraman, Reversed conductance decay of 1D topological insulators by tight-binding analysis, The Journal of Physical Chemistry Letters 13 (2022) 9703-9710. https://doi.org/10.1021/acs.jpclett.2c02812
[31] A.P. Schnyder, S. Ryu, A. Furusaki, A.W. Ludwig, Classification of topological insulators and superconductors in three spatial dimensions, Physical Review B 78 (2008) 195125. https://doi.org/10.1103/PhysRevB.78.195125
[32] A.W. Ludwig, Topological phases: Classification of topological insulators and superconductors of non-interacting fermions, and beyond, Physica Scripta 2016 (2015) 014001. https://doi.org/10.1088/0031-8949/2015/T168/014001
[33] M.Z. Hasan, C.L. Kane, Colloquium: Topological insulators, Reviews of Modern Physics, 82 (2010) 3045. https://doi.org/10.1103/RevModPhys.82.3045
[34] J.K. Asbóth, L. Oroszlány, A. Pályi, A short course on topological insulators, Lecture notes in Physics, 2016. https://doi.org/10.1007/978-3-319-25607-8