Numerical suite for the design, simulation and optimization of cathode-less plasma thrusters
Nabil Souhair, Mirko Magarotto, Raoul Andriulli, Fabrizio Ponti
download PDFAbstract. A numerical suite developed for the analysis and design of cathodeless plasma thrusters is presented. The suite includes a Global Model that estimates the thruster’s propulsive performance by means of a balance of electron energy and population density, and a 3D numerical strategy to assess plasma behavior. The suite incorporates a FLUID and EM modules to solve plasma transport and electromagnetic wave propagation within the discharge chamber. The PLUME module, managed by the Starfish code, handles plasma dynamics in the magnetic nozzle using the electrostatic particle-in-cell approach. The suite has been validated against thrust measurements from a Helicon Plasma Thruster demonstrating the suite’s potential for optimizing the design and operation of cathodeless plasma thrusters for space propulsion applications.
Keywords
Space Propulsion, Electric Propulsion, Cathode-Less Plasma Thrusters, Plasma Thrusters, Numerical Simulations, Global Plasma Models, Multi Fluid Approach, Particle-In-Cell
Published online 11/1/2023, 11 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: Nabil Souhair, Mirko Magarotto, Raoul Andriulli, Fabrizio Ponti, Numerical suite for the design, simulation and optimization of cathode-less plasma thrusters, Materials Research Proceedings, Vol. 37, pp 679-689, 2023
DOI: https://doi.org/10.21741/9781644902813-146
The article was published as article 146 of the book Aeronautics and Astronautics
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] S. Mazouffre (2016). Electric propulsion for satellites and spacecraft: established technologies and novel approaches. Plasma Sources Science and Technology, 25(3), 033002. https://doi.org/10.1088/0963-0252/25/3/033002
[2] D. M. Goebel, I. Katz (2008). Fundamentals of electric propulsion: ion and Hall thrusters (Vol. 1). John Wiley & Sons. https://doi.org/10.1002/9780470436448
[3] K. Takahashi (2019). Helicon-type radiofrequency plasma thrusters and magnetic plasma nozzles. Reviews of Modern Plasma Physics, 3(1), 1-61. https://doi.org/10.1007/s41614-019-0024-2
[4] M. Manente, et al. (2019). REGULUS: A propulsion platform to boost small satellite missions. Acta Astronautica, 157, 241-249. https://doi.org/10.1016/j.actaastro.2018.12.022
[5] F. Cannat, T. Lafleur, J. Jarrige, P. Chabert, P. Q. Elias, D. Packan (2015). Optimization of a coaxial electron cyclotron resonance plasma thruster with an analytical model. Physics of Plasmas, 22(5), 053503. https://doi.org/10.1063/1.4920966
[6] D. Arnush, F. F. Chen (1998). Generalized theory of helicon waves. II. Excitation and absorption. Physics of Plasmas, 5(5), 1239-1254. https://doi.org/10.1063/1.872782
[7] M. Magarotto, M. Manente, F. Trezzolani, D. Pavarin (2020). Numerical model of a helicon plasma thruster. IEEE Transactions on Plasma Science, 48(4), 835-844. https://doi.org/10.1109/TPS.2020.2982541
[8] M. Magarotto, D. Melazzi, D. Pavarin (2019). Study on the influence of the magnetic field geometry on the power deposition in a helicon plasma source. Journal of Plasma Physics, 85(4). https://doi.org/10.1017/S0022377819000473
[9] E. Ahedo, M. Merino (2010). Two-dimensional supersonic plasma acceleration in a magnetic nozzle. Physics of Plasmas, 17(7), 073501. https://doi.org/10.1063/1.3442736
[10] N. Bellomo, et al. (2021). Design and In-orbit Demonstration of REGULUS, an Iodine electric propulsion system. CEAS Space Journal. https://doi.org/10.1007/s12567-021-00374-4
[11] A. V. Arefiev, B. N. Breizman (2004). Theoretical components of the VASIMR plasma propulsion concept. Physics of Plasmas, 11(5), 2942-2949. https://doi.org/10.1063/1.1666328
[12] K. Takahashi (2021). Magnetic nozzle radiofrequency plasma thruster approaching twenty percent thruster efficiency. Scientific reports, 11(1). https://doi.org/10.1038/s41598-021-82471-2
[13] D. Melazzi, V. Lancellotti (2014). ADAMANT: A surface and volume integral-equation solver for the analysis and design of helicon plasma sources. Computer Physics Communications, 185(7), 1914-1925. https://doi.org/10.1016/j.cpc.2014.03.019
[14] J. Zhou, D. Pérez-Grande, P. Fajardo, E. Ahedo (2019). Numerical treatment of a magnetized electron fluid model within an electromagnetic plasma thruster simulation code. Plasma Sources Science and Technology, 28(11), 115004. https://doi.org/10.1088/1361-6595/ab4bd3
[15] M. Magarotto, D. Melazzi, D. Pavarin (2020). 3D-VIRTUS: Equilibrium condition solver of radio-frequency magnetized plasma discharges for space applications. Computer Physics Communications, 247, 106953. https://doi.org/10.1016/j.cpc.2019.106953
[16] A. V. Arefiev, B. N. Breizman (2005). Magnetohydrodynamic scenario of plasma detachment in a magnetic nozzle. Physics of Plasmas, 12(4), 043504. https://doi.org/10.1063/1.1875632
[17] G. Sánchez-Arriaga, J. Zhou, E. Ahedo, M. Martínez-Sánchez, J. J. Ramos (2018). Kinetic features and non-stationary electron trapping in paraxial magnetic nozzles. Plasma Sources Science and Technology, 27(3), 035002. https://doi.org/10.1088/1361-6595/aaad7f
[18] F. Cichocki, A. Domínguez-Vázquez, M. Merino, E. Ahedo (2017). Hybrid 3D model for the interaction of plasma thruster plumes with nearby objects. Plasma Sources Science and Technology, 26(12), 125008. https://doi.org/10.1088/1361-6595/aa986e
[19] T. Lafleur (2014). Helicon plasma thruster discharge model. Physics of Plasmas, 21(4), 043507. https://doi.org/10.1063/1.4871727
[20] E. Ahedo, & J. Navarro-Cavallé (2013). Helicon thruster plasma modeling: Two-dimensional fluid-dynamics and propulsive performances. Physics of Plasmas, 20(4), 043512. https://doi.org/10.1063/1.4798409
[21] A. Fruchtman, K. Takahashi, C. Charles, R. W. Boswell (2012). A magnetic nozzle calculation of the force on a plasma. Physics of Plasmas, 19(3), 033507. https://doi.org/10.1063/1.3691650
[22] M. Magarotto, D. Pavarin (2020). Parametric study of a cathode-less radio frequency thruster. IEEE Transactions on Plasma Science, 48(8), 2723-2735. https://doi.org/10.1109/TPS.2020.3006257
[23] E. Ahedo, S. Correyero, J. Navarro-Cavallé, M. Merino (2020). Macroscopic and parametric study of a kinetic plasma expansion in a paraxial magnetic nozzle. Plasma Sources Science and Technology, 29(4), 045017. https://doi.org/10.1088/1361-6595/ab7855
[24] M. Li, M. Merino, E. Ahedo, H. Tang (2019). On electron boundary conditions in PIC plasma thruster plume simulations. Plasma Sources Science and Technology, 28(3), 034004. https://doi.org/10.1088/1361-6595/ab0949
[25] Á. Sánchez-Villar, J. Zhou, E. Ahedo, M. Merino (2021). Coupled plasma transport and electromagnetic wave simulation of an ECR thruster. Plasma Sources Science and Technology, 30(4), 045005. https://doi.org/10.1088/1361-6595/abde20
[26] N. Souhair, M. Magarotto, E. Majorana, F. Ponti, D. Pavarin (2021). Development of a lumping methodology for the analysis of the excited states in plasma discharges operated with argon, neon, krypton and xenon. Physics of Plasmas, 28(9). https://doi.org/10.1063/5.0057494
[27] L. Brieda, M. Keidar (2012). Development of the Starfish Plasma Simulation Code and Update on Multiscale Modeling of Hall Thrusters. 48th AIAA Joint Propulsion Conference, Atlanta, GA, AIAA-2012-4015. https://doi.org/10.2514/6.2012-4015
[28] J. F. Roussel, et al. (2008). SPIS open-source code: Methods, capabilities, achievements, and prospects. IEEE transactions on plasma science, 36(5), 2360-2368. https://doi.org/10.1109/TPS.2008.2002327
[29] P. Chabert, J. Arancibia Monreal, J. Bredin, L. Popelier, A. Aanesland (2012). Global model of a gridded-ion thruster powered by a radiofrequency inductive coil. Physics of Plasmas, 19(7), 073512. https://doi.org/10.1063/1.4737114
[30] M. A. Lieberman, A. J. Lichtenberg (2005). Principles of plasma discharges and materials processing. John Wiley & Sons. https://doi.org/10.1002/0471724254
[31] F. F. Chen (2012). Introduction to plasma physics. Springer Science & Business Media.
[32] N. Souhair, M. Magarotto, M. Manante, D. Pavarin, F. Ponti (2021). Improvement of a numerical tool for the simulation of a Helicon plasma thruster. Space propulsion 2020+1, On line conference, SP2020-00070.
[33] G. Gallina, M. Magarotto, M. Manente, D. Pavarin (2019). Enhanced biDimensional pIc: an electrostatic/magnetostatic particle-in-cell code for plasma based systems. Journal of Plasma Physics, 85(2), 905850205. https://doi.org/10.1017/S0022377819000205
[34] H. Qin, S. Zhang, J. Xiao, J. Liu, Y. Sun, W. M. Tang (2013). Why is Boris algorithm so good?. Physics of Plasmas, 20(8), 084503. https://doi.org/10.1063/1.4818428
[35] S. Di Fede, M. Magarotto, S. Andrews, D. Pavarin (2021). Simulation of the plume of a Magnetically Enhanced Plasma Thruster with SPIS. Journal of Plasma Physics. https://doi.org/10.1017/S0022377821001057
[36] D. J. Griffiths (2005). Introduction to electrodynamics. https://doi.org/10.1016/B978-1-85573-953-6.50026-X
[37] M. Martinez-Sanchez, J. Navarro-Cavallé, E. Ahedo (2015). Electron cooling and finite potential drop in a magnetized plasma expansion. Physics of Plasmas, 22(5), 053501. https://doi.org/10.1063/1.4919627
[38] F. Trezzolani, M. Magarotto, M. Manente, D. Pavarin (2018). Development of a counterbalanced pendulum thrust stand for electric propulsion. Measurement, 122, 494-501. https://doi.org/10.1016/j.measurement.2018.02.011
[39] F. Romano, et al. (2020). RF helicon-based inductive plasma thruster (IPT) design for an atmosphere-breathing electric propulsion system (ABEP). Acta Astronautica, 176, 476-483. https://doi.org/10.1016/j.actaastro.2020.07.008
[40] A. R. Ellingboe, R. W. Boswell (1996). Capacitive, inductive and helicon‐wave modes of operation of a helicon plasma source. Physics of Plasmas, 3(7), 2797-2804. https://doi.org/10.1063/1.871713
[41] A. E. Vinci, S. Mazouffre (2021). Direct experimental comparison of krypton and xenon discharge properties in the magnetic nozzle of a helicon plasma source. Physics of Plasmas, 28(3), 033504. https://doi.org/10.1063/5.0037117
[42] P. Molmud (1960). Expansion of a rarefied gas cloud into a vacuum. The Physics of fluids, 3(3), 362-366. https://doi.org/10.1063/1.1706042
[43] G. Mansutti, et al. (2020). Modeling and design of a plasma-based transmit-array with beam scanning capabilities. Results in Physics, 16, 102923. https://doi.org/10.1016/j.rinp.2019.102923
[44] A. Daykin-Iliopoulos, et al. (2020). Characterisation of a thermionic plasma source apparatus for high-density gaseous plasma antenna applications. Plasma Sources Science and Technology, 29(11), 115002. https://doi.org/10.1088/1361-6595/abb21a
[45] M. Magarotto, P. De Carlo, G. Mansutti, F. J. Bosi, N. E. Buris, A. D. Capobianco, D. Pavarin (2020). Numerical suite for gaseous plasma antennas Simulation. IEEE Transactions on Plasma Science, 49(1), 285-297. https://doi.org/10.1109/TPS.2020.3040008
[46] P. De Carlo, M. Magarotto, G. Mansutti, A. Selmo, A. D. Capobianco, D. Pavarin (2021). Feasibility study of a novel class of plasma antennas for SatCom navigation systems. Acta Astronautica, 178, 846-853. https://doi.org/10.1016/j.actaastro.2020.10.015
[47] P. De Carlo, M. Magarotto, G. Mansutti, S. Boscolo, A. D. Capobianco, D. Pavarin (2021). Experimental Characterization of a Plasma Dipole in the UHF band. IEEE Antennas and Wireless Propagation Letters. https://doi.org/10.1109/LAWP.2021.3091739
[48] M. Saleem (2020). Comparative performance assessment of plasma reactors for the treatment of PFOA; reactor design, kinetics, mineralization and energy yield. Chemical Engineering Journal, 382, 123031. https://doi.org/10.1016/j.cej.2019.123031