Pool boiling heat transfer characteristics of using nanofluids

Pool boiling heat transfer characteristics of using nanofluids

Lujain Abdullatif Alshuhail, Alanood Mahmoud Almoaikel, Feroz Shaik, L. Syam Sundar

download PDF

Abstract Every day, smaller, faster, and more potent modern technologies and systems are being created and put into use, which necessitates the advancement of the thermal fluids that are used in operation to increase the capacity for heat removal. Pool boiling is effectively used in many industrial applications such as refrigeration systems, power plants etc. Application of nanofluids in pool boiling enhances the thermal conductivity and heat transfer rates in the system. This paper highlights the pool boiling heat transfer using nanofluids and its characteristics.

Keywords
Pool Boiling, Nanofluids, Heat Transfer Rates, Thermal Conductivity, Heat Transfer Coefficient

Published online 9/25/2023, 9 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Lujain Abdullatif Alshuhail, Alanood Mahmoud Almoaikel, Feroz Shaik, L. Syam Sundar, Pool boiling heat transfer characteristics of using nanofluids, Materials Research Proceedings, Vol. 36, pp 47-55, 2023

DOI: https://doi.org/10.21741/9781644902790-5

The article was published as article 5 of the book AToMech1-2023 Supplement

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] L.S. Sundar, F. Shaik, K.V. Sharma, V. Punnaiah, A.C.M. Sousa, The second law of thermodynamics analysis for longitudinal strip inserted nanodiamond-Fe3O4/water hybrid nanofluids. Int. J. Thermal Sciences. 181 (2022) 107721. https://doi.org/10.1016/j.ijthermalsci.2022.107721
[2] L.S. Sundar, M.K. Singh, A.C.M. Sousa, Enhanced heat transfer and friction factor of MWCNT-Fe3O4/water hybrid nanofluids, Int. Comm. Heat and Mass Transfer, 52 (2014) 73-83. https://doi.org/10.1016/j.icheatmasstransfer.2014.01.012
[3] L.S. Sundar, M.K. Singh, A.C.M. Sousa, Turbulent heat transfer and friction factor of nanodiamond-nickel hybrid nanofluids flow in a tube: An experimental study, Int. J. Heat and Mass Transfer, 117 (2018) 223-234. https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.109
[4] L.S. Sundar, Feroz Shaik, Heat transfer and exergy efficiency analysis of 60% and 40% ethylene glycol mixture diamond nanofluids flow through a shell and helical coil heat exchanger, International Journal of Thermal Sciences, 184 (2023) 107901. https://doi.org/10.1016/j.ijthermalsci.2022.107901
[5] X.D. Fang, Y. Chen, H. Zhang, W. Chen, A. Dong, R. Wang, Heat transfer and critical heat flux of nanofluid boiling: A comprehensive review, Renewable and Sustainable Energy Reviews, 62 (2016) 924-940. https://doi.org/10.1016/j.rser.2016.05.047
[6] J. Buongiorno, L. Hu, I.C. Bang, Towards an Explanation of the Mechanism of Boiling Critical Heat Flux Enhancement in Nanofluids, In Proceedings of the ASME 2007 5th International Conference on Nanochannels, Microchannels, and Minichannels. ASME 5th International Conference on Nanochannels, Microchannels, and Minichannels, Puebla, Mexico, (2007) 989-995. https://doi.org/10.1115/ICNMM2007-30156
[7] B. Bharat, B.Divya, Nanofluids for heat and mass transfer, Academic Press, (2021).
[8] Y. Anil Reddy, S. Venkatachalapathy, Heat transfer enhancement studies in pool boiling using hybrid nanofluids, ThermochimicaActa, 672 (2019) 93-100. https://doi.org/10.1016/j.tca.2018.11.014
[9] Y.J. Hwang, Y.C. Ahn, H.S. Shin, C.G. Lee, G.T. Kim, H.S. Park et al., Investigation on characteristics of thermal conductivity enhancement of nanofluids, Current Applied Physics, 6(6) (2006) 1068-71. https://doi.org/10.1016/j.cap.2005.07.021
[10] J.A. Eastman, S.U.S. Choi, S. Li, W. Yu, L.J. Thompson, Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Applied Physics Letters, 78(6) (2001) 718-20. https://doi.org/10.1063/1.1341218
[11] M.S. Liu, M.C.C. Lin, I.T. Huang, C.C. Wang, Enhancement of thermal conductivity with CuO for Nanofluids, Chemical Engineering and Technology, 29(1) (2006) 72-7. https://doi.org/10.1002/ceat.200500184
[12] D.H. Yoo, K.S. Hong, H.S. Yang, Study of thermal conductivity of nanofluids for the application of heat transfer fluids, ThermochimicaActa, 455(1-2)(2007) 66-9. https://doi.org/10.1016/j.tca.2006.12.006
[13] S.U.S. Choi, Z.G. Zhang, W. Yu, F.E. Lockwood, E.A. Grulke,Anomalous thermal conductivity enhancement in nanotube suspensions, Applied Physics Letters, 79(14) (2001) 2252-4. https://doi.org/10.1063/1.1408272
[14] Y. Yang, Carbon nanofluids for lubricant application, University of Kentucky,(2006).
[15] S. Jana, A. Salehi-Khojin, W.H. Zhong, Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives, ThermochimicaActa, 462(1-2) (2007) 45-55. https://doi.org/10.1016/j.tca.2007.06.009
[16] H.U. Kang, S.H. Kim, J.M. Oh, Estimation of thermal conductivity of nanofluid using experimental effective particle, Experimental Heat Transfer, 19(3) (2006) 181-91. https://doi.org/10.1080/08916150600619281
[17] X. Zhang, H. Gu, M. Fujii, Experimental study on the effective thermal conductivity and thermal diffusivity of nanofluids, International Journal of Thermophysics, 27(2) (2006) 569-80. https://doi.org/10.1007/s10765-006-0054-1
[18] X. Zhang, H. Gu, M. Fujii, Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles, Journal pf Applied Physics, 100(4) (2006) 044325. https://doi.org/10.1063/1.2259789
[19] S. ZeinaliHeris, M.Nasr Esfahany, S.G. Etemad, Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube, International Journal of Heat and Fluid Flow, 28(2) (2007) 203-10. https://doi.org/10.1016/j.ijheatfluidflow.2006.05.001
[20] E.V. Timofeeva, A.N. Gavrilov, J.M.McCloskey, Y.V. Tolmachev, S. Sprunt, L.M. Lopatina, et al., Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory, Physical Review E, 76(6) (2007) 16. https://doi.org/10.1103/PhysRevE.76.061203
[21] J.H. Lee, K.S. Hwang, S.P. Jang, B.H. Lee, J.H. Kim, S.U.S. Choi, et al., Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles, International Journal of Heat and Mass transfer, 51(11-12) (2008) 2651-6. https://doi.org/10.1016/j.ijheatmasstransfer.2007.10.026
[22] W. Yu, D.M. France, S.U.S. Choi, J.L. Routbort, Argonne National Laboratory review and assessment of nanofluid technology for transportation and other applications, Energy Systems Division, (2007). https://doi.org/10.2172/919327
[23] R.S. Vajjha, D.K. Das, Experimental determination of thermal conductivity of three nanofluids and development of new correlations, International Journal of Heat and Mass transfer, 52(21-22) (2009) 4675-82. https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.027
[24] K.Y. Leong, R. Saidur, S.N. Kazi, M.A. Mamun, Performance investigation of an automotive car radiator operated with nanofluid based coolants (nanofluid as a coolant in a radiator), Applied Thermal Engineering (2010). https://doi.org/10.1016/j.applthermaleng.2010.07.019
[25] S. Wu, D. Zhu, X. Li, H. Li, J. Lei, Thermal energy storage behavior of Al2O3-H2O nanofluids, ThermochimicaActa, 483 (2009) 73-7. https://doi.org/10.1016/j.tca.2008.11.006
[26] K.L. Jin, K. Junemo, H. Hiki, T.K. Yong, The effects of nanoparticles on absorption heat and mass transfer performance in NH3/H2O binary nanofluids, International Journal of Refrigeration, 33 (2010) 269-75. https://doi.org/10.1016/j.ijrefrig.2009.10.004
[27] K. Habib, M. Ahmed, A.Q. Abdullah, O.A. Alawi, B. Bakthavatchalam, O.A. Hussein, Metallic Oxides for Innovative Refrigerant Thermo-Physical Properties: Mathematical Models, Tikrit Journal of Engineering Sciences, 29(1) (2022) 1-15. https://doi.org/10.25130/tjes.29.1.1
[28] I.M. Mahbubul, R. Saidur, M.A. Amalina,Thermal conductivity, viscosity and density of R141b refrigerant based nanofluid, Procedia Engineering, 56 (2013) 310-315. https://doi.org/10.1016/j.proeng.2013.03.124
[29] V. Trisaksri, S. Wongwises, Nucleate pool boiling heat transfer of TiO2-R141b nanofluids, Journal of Heat and Mass Transfer, 52(5-6) (2009) 1582-8. https://doi.org/10.1016/j.ijheatmasstransfer.2008.07.041
[30] K. Praveen, D.K. Namburu, K.M. Das, Tanguturi, S.V. Ravikanth, Numerical study of turbulent flow and heat transfer characteristics of nanofluids considering variable properties, International Journal of Thermal Sciences, 48 (2009) 290-302. https://doi.org/10.1016/j.ijthermalsci.2008.01.001
[31] Seok Bin Seo, In Cheol Bang, Effects of Al2O3 nanoparticles deposition on critical heat flux of R-123 in flow boiling heat transfer, Nuclear Engineering and Technology, 47(4) (2015) 398-406. https://doi.org/10.1016/j.net.2015.04.003
[32] J.M.S. Jabardo, An Overview of Surface Roughness Effects on Nucleate Boiling Heat Transfer, The Open Transport Phenomena Journal, 2 (2010) 24-34. https://doi.org/10.2174/1877729501002010024
[33] D. Ding, H. Peng, W. Jiang, Y. Gao, The migration characteristics of nanoparticles in the pool boiling process of nanorefrigerant and nanorefrigerant-oil mixture, International Journal of Refrigeration, 32(1) (2009) 114-123. https://doi.org/10.1016/j.ijrefrig.2008.08.007
[34] W.H. Cai, W.W. Kong, Y. Wang, M. S. Zhu, X.L. Wang, Surface tension of lithium bromide aqueous solution/ammonia with additives and nano-particles, Journal of Central South University, 22(5) (2015) 1979-1985. https://doi.org/10.1007/s11771-015-2718-0
[35] M.S. Kamel, F. Lezsovits, Experimental study on pool boiling heat transfer performance of magnesium oxide nanoparticles based water nanofluid, Pollack Periodica, 15(3) (2020) 101-112. https://doi.org/10.1556/606.2020.15.3.10
[36] A. Pare, S.K. Ghosh, The empirical characteristics on transient nature of al2o3-water nanofluid pool boiling, Applied Thermal Engineering, 199 (2021) 117617. https://doi.org/10.1016/j.applthermaleng.2021.117617
[37] M. Boroumand Ghahnaviyeh, A. Abdollahi, Experimental study of the effect of mechanical vibration on pool boiling heat transfer coefficient of Fe3O4/deionized water nanofluid, Journal of Thermal Analysis and Calorimetry, 147(24) (2022) 14343-14357. https://doi.org/10.1007/s10973-022-11591-2
[38] T. Wen, J. Luo, K. Jiao, L. Lu, Experimental study on the pool boiling performance of a highly self-dispersion TiO2 nanofluid on copper surface, International Journal of Thermal Sciences, 184 (2023) 107999. https://doi.org/10.1016/j.ijthermalsci.2022.107999
[39] S. Kakaç, A. Pramuanjaroenkij, Single-phase and two-phase treatments of convective heat transfer enhancement with nanofluids – a state-of-the-art review, International Journal of Thermal Sciences, 100 (2016) 75-97. https://doi.org/10.1016/j.ijthermalsci.2015.09.021
[40] M. Turkyilmazoglu, Single phase nanofluids in fluid mechanics and their hydrodynamic linear stability analysis, Computer Methods and Programs in Biomedicine, 187 (2020) 105171. https://doi.org/10.1016/j.cmpb.2019.105171
[41] H. ShakirMajdi, H.M. Abdul Hussein, L. JaaferHabeeb, D. Zivkovic, Pool boiling simulation of two nanofluids at multi concentrations in enclosure with different shapes of fins, Materials Today: Proceedings, 60, (2022) 2043-2063. https://doi.org/10.1016/j.matpr.2022.01.290
[42] S. Zaboli, H. Alimoradi, M. Shams, Numerical investigation on improvement in pool boiling heat transfer characteristics using different nanofluid concentrations, Journal of Thermal Analysis and Calorimetry, 147(19) (2022) 10659-10676. https://doi.org/10.1007/s10973-022-11272-0
[43] A. Mehralizadeh, S.R. Shabanian, G. Bakeri, Experimental and Modeling Study of heat transfer enhancement of TiO2/SiO2 hybrid nanofluids on modified surfaces in pool boiling process, The European Physical Journal Plus, 135(10) (2020). https://doi.org/10.1140/epjp/s13360-020-00809-7
[44] L.L. Manetti, A.S. Moita, R.R. de Souza, E.M. Cardoso, Effect of copper foam thickness on pool boiling heat transfer of HFE-7100, International Journal of Heat and Mass Transfer, 152 (2020) 119547. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119547
[45] I.S. Kiyomura, L.L. Manetti, A.P. da Cunha, G. Ribatski, E.M. Cardoso, An analysis of the effects of nanoparticles deposition on characteristics of the heating surface and on pool boiling of water, International Journal of Heat and Mass Transfer, 106 (2017) 666-674. https://doi.org/10.1016/j.ijheatmasstransfer.2016.09.051
[46] A. Norouzipour, A. Abdollahi, M. Afrand, Experimental study of the optimum size of silica nanoparticles on the pool boiling heat transfer coefficient of silicon oxide/deionized water nanofluid, Powder Technology, 345 (2019 728-738. https://doi.org/10.1016/j.powtec.2019.01.034