Technical Potential Evaluation of Inorganic Tin Perovskite Solar Cells
Lutfu Sagban Sua, Figen Balo
A component that contributes to high efficiency is the photovoltaic cell design. The perovskite photovoltaic cell is a shining star in the world of the solar panel industry. Since perovskite structure allows ions as a dopant, this path with a variety of metal cations can be pursued further. Although the subject of selecting renewable energy supplies has been explored in the literature, the challenge of selecting solar panels has only been studied in a handful of studies. The inorganic tin perovskite photovoltaic cells as the selection problem with multiple-criteria decision-making methodology have not been researched yet. In this study, the most effective solar cell among the latest inorganic tin perovskite solar cells is analyzed by AHP methodology.
Keywords
Inorganic Tin Perovskite Solar Cells, Photovoltaic, Solar Cell, Solar Energy, Renewable Energy
Published online 10/15/2023, 22 pages
Citation: Lutfu Sagban Sua, Figen Balo, Technical Potential Evaluation of Inorganic Tin Perovskite Solar Cells, Materials Research Foundations, Vol. 151, pp 155-176, 2023
DOI: https://doi.org/10.21741/9781644902738-6
Part of the book on Perovskite based Materials for Energy Storage Devices
References
[1] C. Steven, M. Arun, Opportunities and challenges for a sustainable energy future, Nature. 488 (2012) 294-303. https://doi.org/10.1038/nature11475
[2] G. Bye, B. Ceccaroli, Solar grade silicon: Technology status and industrial trends, Sol. Energ. Mater. Sol. Cell. 130 (2014) 63446. https://doi.org/10.1016/j.solmat.2014.06.019
[3] Z. Dong, Y. Lin, Ultra-thin wafer technology and applications: A review. Mater. Sci. Semicond. Process. 105 (2020) 104681. https://doi.org/10.1016/j.mssp.2019.104681
[4] M.A. Mingsukang, M.H. Buraidah, A.K. Arof, Third-generation-sensitized solar cells, in: N. Das (Eds.), Nanostructured Solar Cells. Rijeka: IntechOpen, 2017, 65290. https://doi.org/10.5772/65290
[5] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc. 131 (2009) 6050-6051. https://doi.org/10.1021/ja809598r
[6] J.H. Im, C.R. Lee, J.W. Lee, S.W. Park, N.G. Park, 6.5% efficient perovskite quantum-dot-sensitized solar cell, Nanoscale. 3 (2011) 4088-4093. https://doi.org/10.1039/c1nr10867k
[7] J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S.I. Seok, Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells, Nano Lett. 13 (2013) 1764-1769. https://doi.org/10.1021/nl400349b
[8] NREL, (NREL). https://www.nrel.gov/ncpv/images/efficiency_chart.jpg.
[9] F. Bai, Y. Hu, Y. Hu, T. Qiu, X. Miao, S. Zhang, Lead-free, air-stable ultrathin Cs3Bi2I9 perovskite nanosheets for solar cells, Sol. Energy Mater. Sol. Cells. 184 (2018) 15-21. https://doi.org/10.1016/j.solmat.2018.04.032
[10] B. Saparov, F. Hong, J.P. Sun, H.S. Duan, W. Meng, S. Cameron, I.G. Hill, Y. Yan, D.B. Mitzi, Thin-film preparation and characterization of Cs3Sb2I9: A lead-free layered perovskite semiconductor, Chem. Mater. 27 (2015) 5622-5632. https://doi.org/10.1021/acs.chemmater.5b01989
[11] D. Cortecchia, H.A. Dewi, J. Yin, A. Bruno, S. Chen, T. Baikie, P.P. Boix, M. Gratzel, S. Mhaisalkar, C. Soci, N. Mathews, Lead-free MA2CuCl(x)Br(4-x) hybrid perovskites, Inorg. Chem. 55 (2016) 1044-1052. https://doi.org/10.1021/acs.inorgchem.5b01896
[12] N.K. Noel, S.D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A.A. Haghighirad, A. Sadhanala, G.E. Eperon, S.K. Pathak, M.B. Johnston, A. Petrozza, L.M. Herz, H.J. Snaith, Lead-free organic-inorganic tin halide perovskites for photovoltaic applications, Energy Environ. Sci. 7 (2014) 3061-3068. https://doi.org/10.1039/C4EE01076K
[13] T. Krishnamoorthy, H. Ding, C. Yan, W.L. Leong, T. Baikie, Z. Zhang, M. Sherburne, S. Li, M. Asta, N. Mathews, S.G. Mhaisalkar, Lead-free germanium iodide perovskite materials for photovoltaic applications, J. Mater. Chem: A, 3 (2015) 23829-23832. https://doi.org/10.1039/C5TA05741H
[14] J. Li, H.L. Cao, W.B. Jiao, Q. Wang, M. Wei, I. Cantone, J. Lu, A. Abate, Biological impact of lead from halide perovskites reveals the risk of introducing a safe threshold, Nat. Commun. 11 (2020) 310. https://doi.org/10.1038/s41467-019-13910-y
[15] D.B. Mitzi, C.A. Feild, Z. Schlesinger, R.B. Laibowitz, Transport, optical, and magnetic properties of the conducting halide perovskite CH3NH3SnI3, J. Solid State Chem. 114 (1995) 159-163. https://doi.org/10.1006/jssc.1995.1023
[16] Y. Takahashi, H. Hasegawa, Y. Takahashi, T. Inabe, Hall mobility in tin iodide perovskite CH3NH3SnI3: Evidence for a doped semiconductor, J. Solid State Chem. 205 (2013) 39-43. https://doi.org/10.1016/j.jssc.2013.07.008
[17] I. Chung, J.H. Song, J. Im, J. Androulakis, C.D. Malliakas, H. Li, A.J. Freeman, J.T. Kenney, M.G. Kanatzidis, CsSnI3: Semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions, J. Am. Chem. Soc. 134 (2012) 8579-8587. https://doi.org/10.1021/ja301539s
[18] W. Ke, M.G. Kanatzidis, Prospects for low-toxicity Lead-free perovskite solar cells, Nat. Commun. 10 (2019) 965. https://doi.org/10.1038/s41467-019-08918-3
[19] Y. Ogomi, A. Morita, S. Tsukamoto, T. Saitho, N. Fujikawa, Q. Shen, CH3NH3SnxPb(1-x)I3 perovskite solar cells covering up to 1060 nm, J. Phys. Chem. Lett. 5 (2014)1004-1011. https://doi.org/10.1021/jz5002117
[20] S.J. Lee, S.S. Shin, Y.C. Kim, D. Kim, T.K. Ahn, J.H. Noh, J. Seo, S. Seok, Fabrication of efficient Formamidinium Tin Iodide perovskite solar cells through SnF2-Pyrazine complex, J. Am. Chem. Soc. 14 (2016) 3974-3977. https://doi.org/10.1021/jacs.6b00142
[21] Y. Takahashi, R. Obara, Z.Z. Lin, Y. Takahashi, T. Naito, T. Inabe, S. Ishibashi, K. Terakura, Charge-transport in Tin-Iodide perovskite CH3NH3SnI3: Origin of high conductivity, Dalton Trans. 40 (2011) 5563-5568. https://doi.org/10.1039/c0dt01601b
[22] N.K. Noel, S.D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A.-A. Haghighirad, A. Sadhanala, G.E. Eperon, S.K. Pathak, M.B. Johnston, A. Petrozza, L.M. Herz, H.J.Snaith, Lead-free organic-inorganic Tin halide perovskites for photovoltaic applications, Energy Environ. Sci. 7 (2014) 3061-3068. https://doi.org/10.1039/C4EE01076K
[23] M.H. Kumar, S. Dharani, W.L. Leong, P.P. Boix, R.R. Prabhakar, T. Baikie, C. Shi, H. Ding, R. Ramesh, M. Asta, M. Graetzel, S.G. Mhaisalkar, N. Mathews, Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation, Adv. Mater. 26 (2014) 7122-7127. https://doi.org/10.1002/adma.201401991
[24] S. Shao, J. Liu, G. Portale, H.H. Fang, G.R. Blake, G.H.T. Brink, L.J.A. Koster, M.A. Loi, Highly reproducible Sn‐based hybrid perovskite solar cells with 9% efficiency, Adv. Eng. Mater. 8 (2018) 1702019. https://doi.org/10.1002/aenm.201702019
[25] F. Hao, C.C. Stoumpos, D.H. Cao, R.P.H. Chang, M.G. Kanatzidis, Lead-free solid-state organic-inorganic halide perovskite solar cells, Nat. Photon. 8 (2014) 489-494. https://doi.org/10.1038/nphoton.2014.82
[26] E. Jokar, C.H. Chien, C.M. Tsai, A. Fathi, E.W.G. Diau, Robust tin-based perovskite solar cells with hybrid organic cations to attain efficiency approaching 10%, Adv. Mat. 31 (2018) 1804835. https://doi.org/10.1002/adma.201804835
[27] N. Espinosa, L.S.-Lujan, A. Urbina, F.C. Krebs, Solution and vapor deposited lead perovskite solar cells: Ecotoxicity from a life cycle assessment perspective, Sol. Energy Mater. Sol. Cells. 137 (2015) 303-310. https://doi.org/10.1016/j.solmat.2015.02.013
[28] J. Zhang, X. Gao, Y. Deng, B. Li, C. Yuan, Life cycle assessment of titania perovskite solar cell technology for sustainable design and manufacturing, ChemSusChem. 8 (2015) 3882-3891. https://doi.org/10.1002/cssc.201500848
[29] I.R. Benmessaoud, A.-L.M. Mellier, E. Horvath, B. Maco, M. Spina, H.A. Lashuel, L. Forro, Health hazards of Methylammonium Lead Iodide based perovskites: Cytotoxicity studies, Toxicol. Res. 5 (2016) 407-419. https://doi.org/10.1039/C5TX00303B
[30] A. Babayigit, D.D. Thanh, A. Ethirajan, J. Manca, M. Muller, H.-G. Boyen, B. Conings, Assessing the toxicity of Pb-and Sn-based perovskite solar cells in model organisms Danio rerio, Sci. Rep. 6 (2016) 18721. https://doi.org/10.1038/srep18721
[31] H.H. Fang, A. Sampson, S. Shao, J. Even, M.A. Loi, Long-lived hot-carrier light emission and large blue shift in Formamidinium Tin Triiodide perovskites, Nature Commu. 9 (2018) 243. https://doi.org/10.1038/s41467-017-02684-w
[32] D. Weber, CH3NH3SnBrxI3-x (x=0-3), ein Sn(II)-system mit kubischer Perowskitstruktur/CH3NH3SnBrxI3-x (x=0-3), a Sn(II)-system with cubic perovskite structure, Z Naturforsch: B, 33 (1978) 862-865. https://doi.org/10.1515/znb-1978-0809
[33] K. Yamada, T. Matsui, T. Tsuritani, T. Okuda, S. Ichiba, 127I-NQR, 119 Sn Mössbauer effect, and electrical conductivity of MSnI3 (M = K, NH4, Rb, Cs, and CH3NH3), Z Naturforsch: A, 45 (1990) 307-312. https://doi.org/10.1515/zna-1990-3-416
[34] D.B. Mitzi, C.A. Feild, W.T.A. Harrison, A.M. Guloy, Conducting tin halides with a layered organic-based perovskite structure, Nature. 369 (1994) 467-469. https://doi.org/10.1038/369467a0
[35] D.B. Mitzi, C.A. Feild, Z. Schlesinger, R.B. Laibowitz, Transport, optical, and magnetic properties of the conducting halide perovskite CH3NH3SnI3, J. Solid State Chem. 114 (1995) 159-163. https://doi.org/10.1006/jssc.1995.1023
[36] Y. Takahashi, R. Obara, Z.Z. Lin, Y. Takahashi, T. Naito, T. Inabe, Charge-transport in Tin-Iodide perovskite CH3NH3SnI3: Origin of high conductivity, Dalton Trans. 40 (2011) 5563-5568. https://doi.org/10.1039/c0dt01601b
[37] N.K. Noel, S.D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A.A. Haghighirad, Lead-free organic-inorganic Tin halide perovskites for photovoltaic applications, Energy Environ Sci. 7 (2014) 3061. https://doi.org/10.1039/C4EE01076K
[38] F. Hao, C.C. Stoumpos, D.H. Cao, R.P.H. Chang, M.G. Kanatzidis, Lead-free solid-state organic-inorganic halide perovskite solar cells, Nat. Photonics. 8 (2014) 489-94. https://doi.org/10.1038/nphoton.2014.82
[39] N.D. Arora, J.R. Hauser, Temperature dependence of Silicon solar cell characteristics, Sol. Energy Mater. 6 (1982) 151-158. https://doi.org/10.1016/0165-1633(82)90016-8
[40] M. Chegaar, A. Hamzaoui, P. Petit, M. Aillerie, A. Herguth, Effect of illumination intensity on solar cells parameters, Energy Procedia. 36 (2013) 722-729. https://doi.org/10.1016/j.egypro.2013.07.084
[41] S. Dubey, J.N. Sarvaiya, B. Seshadri, Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world: A review, Energy Procedia. 33 (2013) 311-321. https://doi.org/10.1016/j.egypro.2013.05.072
[42] N.D. Arora, J.R. Hauser, Temperature dependence of Silicon solar cell characteristics, Sol. Energy Mater. 6 (1982) 151-158. https://doi.org/10.1016/0165-1633(82)90016-8
[43] W. Ke, C. Stoumpos, I. Spanopoulos, L. Mao, M. Chen, M. Wasielewski, M. Kanatzidis, Efficient Lead-free solar cells based on hollow {en}MASnI3 perovskites, J. Am. Chem. Soc. 139 (2017) 14800-14806. https://doi.org/10.1021/jacs.7b09018
[44] M. Kumar, S. Dharani, W. Leong, P. Boix, R. Prabhakar, T. Baikie, C. Shi, H. Ding, R. Ramesh, M. Asta, M. Graetzel, S. Mhaisalkar, N. Mathews, Lead- free halide perovskite solar cells with high photocurrents realized through vacancy modulation, Adv. Mater. 26 (2014) 7122-7127. https://doi.org/10.1002/adma.201401991
[45] M. Chen, M. Ju, H. Garces, A. Carl, L. Ono, Z. Hawash, Y. Zhang, T. Shen, Y. Qi, R. Grimm, D. Pacifici, X. Zeng, Y. Zhou, N. Padture, Highly stable and efficient all-inorganic Lead-free perovskite solar cells with native-oxide passivation, Nat. Commun. 10 (2019) 16 https://doi.org/10.1038/s41467-018-07951-y
[46] J. Heo, J. Kim, H. Kim, S. Moon, S. Im, K. Hong, Roles of SnX2 (X F, Cl, Br) additives in Tin-based halide perovskites toward highly efficient and stable Lead-free perovskite solar cells, J. Phys. Chem. Lett. 9 (2018) 6024-6031. https://doi.org/10.1021/acs.jpclett.8b02555
[47] H. Ban, T. Zhang, X. Gong, Q. Sun, X. Zhang, N. Pootrakulchote, Y. Shen, M. Wang, Fully inorganic CsSnI3 mesoporous perovskite solar cells with high efficiency and stability via Coadditive engineering, Solar RLL. 5 (2021) 2100069. https://doi.org/10.1002/solr.202100069
[48] K. Marshall, M. Walker, R. Walton, R. Hatton, Enhanced stability and efficiency in hole-transport-layer-free CsSnI3 perovskite photovoltaics, Nat. Energy. 1 (2016) 16178. https://doi.org/10.1038/nenergy.2016.178
[49] W. Li, J. Li, J. Li, J. Fan, Y. Mai, L. Wang, Addictive-assisted construction of all- inorganic CsSnIBr2 mesoscopic perovskite solar cells with superior thermal stability up to 473 K, J. Mater. Chem. 4 (2016) 17104-17110. https://doi.org/10.1039/C6TA08332C
[50] S. Gupta, T. Bendikov, G. Hodes, D. Cahen, CsSnBr3, A lead-free halide perovskite for long-term solar cell application: Insights on SnF2 addition, ACS Energy Lett. 1 (2016) 1028-1033. https://doi.org/10.1021/acsenergylett.6b00402
[51] B. Li, H. Di, B. Chang, R. Yin, L. Fu, Y. Zhang, L. Yin, Efficient passivation strategy on Sn related defects for high performance all-inorganic CsSnI3 perovskite solar cells, Adv. Funct. Mater. 31 (2021) 2007447. https://doi.org/10.1002/adfm.202007447
[52] T. Song, T. Yokoyama, C. Stoumpos, J. Logsdon, D. Cao, M. Wasielewski, S. Aramaki, M. Kanatzidis, Importance of reducing vapor atmosphere in the fabrication of Tin-based perovskite solar cells, J. Am. Chem. Soc. 139 (2017) 836-842. https://doi.org/10.1021/jacs.6b10734
[53] T. Ye, X. Wang, K. Wang, S. Ma, D. Yang, Y. Hou, J. Yoon, K. Wang, S. Priya, Localized electron density engineering for stabilized B-γ CsSnI3-based perovskite solar cells with efficiencies >10%, ACS Energy Lett. 6 (2021) 1480-1489. https://doi.org/10.1021/acsenergylett.1c00342
[54] T. Ye, K. Wang, Y. Hou, D. Yang, N. Smith, B. Magill, J. Yoon, R. Mudiyanselage, G. Khodaparast, K. Wang, S. Priya, Ambient-air-stable lead-free CsSnI3 solar cells with greater than 7.5% efficiency, J. Am. Chem. Soc. 143 (2021) 4319-4328. https://doi.org/10.1021/jacs.0c13069
[55] T. Song, T. Yokoyama, S. Aramaki, M. Kanatzidis, Performance enhancement of Lead-free Tin-based perovskite solar cells with reducing atmosphere-assisted dispersible additive, ACS Energy Lett. 2 (2017) 897-903. https://doi.org/10.1021/acsenergylett.7b00171
[56] T. Song, T. Yokoyama, J. Logsdon, M. Wasielewski, S. Aramaki, M. Kanatzidis, Piperazine suppresses self-doping in CsSnI3 perovskite solar cells, ACS Appl. Energy Mater. 1 (2018) 4221-4226. https://doi.org/10.1021/acsaem.8b00866
[57] T. Zhang, H. Li, H. Ban, Q. Sun, Y. Shen, M. Wang, Efficient CsSnI3-based inorganic perovskite solar cells based on a mesoscopic metal oxide frame-work via incorporating a donor element, J. Mater. Chem. 8 (2020) 4118-4124. https://doi.org/10.1039/C9TA11794F
[58] G. Sasikumar, S. Velappan, P. Manimaran, An integrated model for supplier selection using fuzzy analytical hierarchy process: A steel plant case study, Int. J. Procure. Manag. 3 (2010) 292-315. https://doi.org/10.1504/IJPM.2010.033447
[59] Y.P. Cai, G.H. Huang, Q.G. Lin, X.H. Nie, Q. Tan, An optimization-model-based interactive decision support system for regional energy management systems planning under uncertainty, Expert Syst. Appl. 36 (2009) 3470-3482. https://doi.org/10.1016/j.eswa.2008.02.036
[60] A. Mardani, A. Jusoh, E.K. Zavadskas, Z. Khalifah, Application of multiple criteria decision making techniques in tourism and hospitality industry: A systematic review, Transform. Bus. Econ. 15 (2016) 37.
[61] Y. Charabi, A. Gastli, GIS assessment of large CSP plant in Duqm, Oman, Renew. Sustain. Energy Rev. 14 (2010) 835-841. https://doi.org/10.1016/j.rser.2009.08.019
[62] S.M. Sapuan, H.S. Abdalla, A prototype knowledge-based system for the material selection of polymeric-based composites for automotive components, Compos. Part A: Appl. Sci. Manuf. 29 (1998) 731-742. https://doi.org/10.1016/S1359-835X(98)00049-9
[63] C. Kahraman, I. Kaya, S. Cebi, A comparative analysis for multiattribute selection among renewable energy alternatives using fuzzy axiomatic design and fuzzy analytic hierarchy process, Energy. 34 (2019) 1603-1616. https://doi.org/10.1016/j.energy.2009.07.008
[64] K. Kowalski, S. Stagl, R. Madlener, I. Omann, Sustainable energy futures: Methodological challenges in combining scenarios and participatory multi-criteria analysis, Eur. J. Oper. Res. 197 (2017) 1063-1074. https://doi.org/10.1016/j.ejor.2007.12.049
[65] G. Khan, S. Rathi, Optimal site selection for solar PV power plant in an Indian state using geographical information system (GIS), Int. J. Emerg. Eng. Res. Technol. 2 (2014) 260-266.
[66] W.J. Wang, C.H. Cheng, H.K. Cheng, Fuzzy hierarchical TOPSIS for supplier selection, Appl. Soft Comput. 9 (2009) 377-386. https://doi.org/10.1016/j.asoc.2008.04.014
[67] W. Ho, X. Xu, P.K. Dey, Multi-criteria decision making approaches for supplier evaluation and selection: A literatüre review, Eur. J. Oper. Res. 202 (2010) 16-24. https://doi.org/10.1016/j.ejor.2009.05.009
[68] A. Awasthi, S.S. Chauhan, H. Omrani, Application of fuzzy TOPSIS in evaluating sustainable transportation systems, Int. J. Expert Syst. Appl. 38 (2011) 12270-12280. https://doi.org/10.1016/j.eswa.2011.04.005
[69] K.D. Patlitzianas, A. Pappa, J. Psarras, An information decision support system towards the formulation of modern energy companies, Environ. Renew. Sustain. Energy Rev. 12 (2008) 790-806. https://doi.org/10.1016/j.rser.2006.10.014
[70] M. Vetrivelsezhian, C. Muralidharan, T. Nambirajan, S.G. Deshmukh, Performance measurement in a public sector passenger bus transport company using fuzzy TOPSIS, fuzzy AHP and ANOVA: A case study, Int. J. Eng. Sci. Technol. 3 (2011) 1046-1059.
[71] F. Cavallaro, Fuzzy TOPSIS approach for assessing thermal-energy storage in Concentrated Solar Power (CSP) systems, Appl. Energy. 87 (2010) 496-503. https://doi.org/10.1016/j.apenergy.2009.07.009
[72] T. Kaya, C. Kahraman, Multicriteria renewable energy planning using an integrated fuzzy VIKOR & AHP methodology: The case of Istanbul, Energy. 35 (2010) 2517-2527. https://doi.org/10.1016/j.energy.2010.02.051
[73] J.J. Wang, Y.J. Jing, C.F. Zhang, J.H. Zhao, Review on multicriteria decision analysis aid in sustainable energy decisionmaking, Renew. Sustain. Energy Rev. 13 (2009) 2263-2278. https://doi.org/10.1016/j.rser.2009.06.021
[74] M. Tavana, F.J.S. Arteaga, S. Mohammadi, M. Alimohammadi, A fuzzy multi-criteria spatial decision support system for solar farm location planning, Energy Strategy Rev. 18 (2017) 93-105. https://doi.org/10.1016/j.esr.2017.09.003
[75] A. Kengpol, P. Rontlaong, M. Tuominen, A decision support system for selection of solar power plant locations by applying fuzzy AHP and TOPSIS: An empirical study, J. Softw. Eng. Appl. 6 (2013) 470-481. https://doi.org/10.4236/jsea.2013.69057
[76] N. Amin, C.W. Lung, K. Sopian, A practical field study of various solar cells on their performance in Malaysia, Renew. Energy J. 34 (2009) 1939-1946. https://doi.org/10.1016/j.renene.2008.12.005
[77] T.V. Ramachandra, R.K. Jha, S.V. Krishna, B.V. Shruthi, Solar energy decision support system, Int. J. Sustain. Energy. 24 (2005) 207-224. https://doi.org/10.1080/14786450500292105
[78] P. Beltran, An AHP (analytic hierarchy process)/ANP (analytic network process)-based multi-criteria decision approach for the selection of solar-thermal power plant investment project, Energy 17 (2013) 645-658.
[79] S.O. Nut, U.R. Tuzkaya, N. Saadet, Multiple criteria evaluation of current energy resources for the Turkish manufacturing industry, Energy Convers. Manag. 49 (2008) 1480-1492. https://doi.org/10.1016/j.enconman.2007.12.026
[80] W.B. Lee, H. Lau, Z.Z. Liu, S. Tam, Fuzzy analytic hierarchy process approach in modular product design, Expert Systems. 18 (2001) 32-42. https://doi.org/10.1111/1468-0394.00153
[81] T.L. Saaty, The Analytic Hierarchy Process, New York: McGraw-Hill, 1980. https://doi.org/10.21236/ADA214804
[82] T.V. Ramachandra, R.K. Jha, S.V. Krishna, B.V. Shruthi, Solar energy decision support system, Int. J. Sustain. Energy. 24 (2005) 207-224. https://doi.org/10.1080/14786450500292105