Techniques for Recycling and Recovery of Perovskites Solar Cells

$45.00

Techniques for Recycling and Recovery of Perovskites Solar Cells

Somi Joshi, Kanchan Chaudhary, Kalpana Lodhi, Manjeet Singh Goyat, Tejendra K. Gupta

Perovskite-based photovoltaic cells (PSCs) have been viewed as a capable future generation candidate for photovoltaic innovation with a phenomenal improvement in power transformation productivity (PCE) because of various changes taking place over a decade due to the amazing optoelectronic qualities of perovskite materials. PSCs are extremely competitive in comparison to existing marketed silicon and thin film-based photovoltaic automation due to their configurable band gap, intense inclusion, high power transformation effectiveness, and minimal expense. Contrarily, commercial items invariably affect massive quantities of waste and the quality of products, both of which have a terrible impact on the environment. Perovskite solar cell recycling and recovery methods should be investigated and developed ahead of time to overcome this issue. As a result; PSC components must be recycled for industrial fabrication applications. The importance of recycling and several recycling approaches are discussed in this paper, along with the recycling of several parts of perovskite solar cells which include transparent conductive oxide (TCO) substrates, electron transport materials (ETM), metal electrodes, toxic lead material, and monolithic structure. The reusing technique has also been deliberated about the variety of layered designs. Lastly, the prospect of next-stage perovskite-photovoltaics reusing has been proposed as a means of encouraging eco-friendly extensive manufacture and use.

Keywords
Perovskite Solar Cells, Recycling Process, Lead Toxicity, Cost Analysis

Published online 10/15/2023, 22 pages

Citation: Somi Joshi, Kanchan Chaudhary, Kalpana Lodhi, Manjeet Singh Goyat, Tejendra K. Gupta, Techniques for Recycling and Recovery of Perovskites Solar Cells, Materials Research Foundations, Vol. 151, pp 89-110, 2023

DOI: https://doi.org/10.21741/9781644902738-4

Part of the book on Perovskite based Materials for Energy Storage Devices

References
[1] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc. 131 (2009) 6050-6051. https://doi.org/10.1021/ja809598r
[2] M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition, Nature. 501 (2013) 395-398. https://doi.org/10.1038/nature12509
[3] F. Yang, J. Liu, Z. Lu, P. Dai, T. Nakamura, S. Wang, L. Chen, A. Wakamiya, K. Matsuda, Recycled utilization of a nanoporous Au electrode for reduced fabrication cost of perovskite solar cells, Adv. Sci. 7 (2020) 1902474. https://doi.org/10.1002/advs.201902474
[4] J.I. Bilbao, G. Heath, A. Norgren, M.M. Lunardi, A. Carpenter, R. Corkish, PV Module Design for Recycling Guidelines, National Renewable Energy Lab. (NREL), Golden, CO (United States), 2021. https://doi.org/10.2172/1832877
[5] E. Masanet, A. Horvath, Assessing the benefits of design for recycling plastics in electronics: A case study of computer enclosures, Mater. Des. 28 (2007) 1801-1811. https://doi.org/10.1016/j.matdes.2006.04.022
[6] G. Roos, Business model innovation to create and capture resource value in future circular material chains, Resources. 3 (2014) 248-274. https://doi.org/10.3390/resources3010248
[7] Y. Deng, Z. Ni, A.F. Palmstrom, J. Zhao, S. Xu, C.H.V. Brackle, X. Xiao, K. Zhu, J. Huang, Reduced self-doping of perovskites induced by short annealing for efficient solar modules, Joule 4 (2020) 1949-1960. https://doi.org/10.1016/j.joule.2020.07.003
[8] Y. Jiang, L. Qiu, E.J.J.- Perez, L.K. Ono, Z. Hu, Z. Liu, Z. Wu, L. Meng, Q. Wang, Y. Qi, Reduction of Lead leakage from damaged Lead halide perovskite solar modules using self-healing polymer-based encapsulation, Nat. Energy 4 (2019) 585-593. https://doi.org/10.1038/s41560-019-0406-2
[9] C.C. Stoumpos, C.D. Malliakas, M.G. Kanatzidis, Semiconducting Tin and Lead Iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties, Inorg. Chem. 52 (2013) 9019-9038. https://doi.org/10.1021/ic401215x
[10] B.P. Dhamaniya, P. Chhillar, A. Kumar, K. Chandratre, S. Mahato, K.P. Ganesan, S.K. Pathak, Orientation-Controlled (h0l) PbI2 crystallites using a novel Pb-precursor for facile and quick sequential MAPbI3 Perovskite deposition, ACS Omega. 5 (2020) 31180-31191. https://doi.org/10.1021/acsomega.0c04483
[11] W.R. Mateker, M.D. McGehee, Progress in understanding degradation mechanisms and improving stability in organic photovoltaics, Adv. Mater. 29 (2017) 1603940. https://doi.org/10.1002/adma.201603940
[12] A. Binek, M.L. Petrus, N. Huber, H. Bristow, Y. Hu, T. Bein, P. Docampo, Recycling perovskite solar cells to avoid lead waste, ACS Appl. Mater. Interfaces. 8 (2016) 12881-12886. https://doi.org/10.1021/acsami.6b03767
[13] A. Babayigit, A. Ethirajan, M. Muller, B. Conings, Toxicity of organometal halide perovskite solar cells, Nat. Mater. 15 (2016) 247 251. https://doi.org/10.1038/nmat4572
[14] P. Billen, E. Leccisi, S. Dastidar, S. Li, L. Lobaton, S. Spatari, A.T. Fafarman, V.M. Fthenakis, J.B. Baxter, Comparative evaluation of Lead emissions and toxicity potential in the life cycle of Lead halide perovskite photovoltaics, Energy 166 (2019) 1089-1096. https://doi.org/10.1016/j.energy.2018.10.141
[15] G. Wang, Y. Zhai, S. Zhang, L. Diomede, P. Bigini, M. Romeo, S. Cambier, S. Contal, N.H. Nguyen, P. Rosická, An across-species comparison of the sensitivity of different organisms to Pb-based perovskites used in solar cells, Sci. Total Environ. 708 (2020) 135134. https://doi.org/10.1016/j.scitotenv.2019.135134
[16] A. Alassali, D. Barouta, H. Tirion, Y. Moldt, K. Kuchta, Towards a high quality recycling of plastics from waste electrical and electronic equipment through separation of contaminated fractions, J. Hazard. Mater. 387 (2020) 121741. https://doi.org/10.1016/j.jhazmat.2019.121741
[17] L. Huang, Z. Hu, J. Xu, X. Sun, Y. Du, J. Ni, H. Cai, J. Li, J. Zhang, Efficient electron-transport layer-free planar perovskite solar cells via recycling the FTO/glass substrates from degraded devices, Sol. Energy Mater. Sol. Cells. 152 (2016) 118-124. https://doi.org/10.1016/j.solmat.2016.03.035
[18] B. Augustine, K. Remes, G.S. Lorite, J. Varghese, T. Fabritius, Recycling perovskite solar cells through inexpensive quality recovery and reuse of patterned Indium Tin oxide and substrates from expired devices by single solvent treatment, Sol. Energy Mater. Sol. Cells. 194 (2019) 74-82. https://doi.org/10.1016/j.solmat.2019.01.041
[19] B.J. Kim, D.H. Kim, S.L. Kwon, S.Y. Park, Z. Li, K. Zhu, H.S. Jung, Selective dissolution of halide perovskites as a step towards recycling solar cells, Nat. Commun. 7 (2016) 1-9. https://doi.org/10.1038/ncomms11735
[20] J.M. Kadro, N. Pellet, F. Giordano, A. Ulianov, O. Müntener, J. Maier, M. Grätzel, A. Hagfeldt, Proof-of-concept for facile perovskite solar cell recycling, Energy Environ. Sci. 9 (2016) 3172-3179. https://doi.org/10.1039/C6EE02013E
[21] L. Huang, J. Xu, X. Sun, R. Xu, Y. Du, J. Ni, H. Cai, J. Li, Z. Hu, J. Zhang, New films on old substrates: Toward green and sustainable energy production via recycling of functional components from degraded perovskite solar cells, ACS Sustain. Chem. Eng. 5 (2017) 3261-3269. https://doi.org/10.1021/acssuschemeng.6b03089
[22] B. Hailegnaw, S. Kirmayer, E. Edri, G. Hodes, D. Cahen, Rain on Methylammonium Lead Iodide based perovskites: Possible environmental effects of perovskite solar cells, J. Phys. Chem. Lett. 6 (2015) 1543-1547. https://doi.org/10.1021/acs.jpclett.5b00504
[23] I.R. Benmessaoud, A.-L.M. Mellier, E. Horváth, B. Maco, M. Spina, H.A. Lashuel, L. Forró, Health hazards of Methylammonium Lead Iodide based perovskites: Cytotoxicity studies, Toxicol. Res. 5 (2016) 407-419. https://doi.org/10.1039/C5TX00303B
[24] B. Chen, C. Fei, S. Chen, H. Gu, X. Xiao, J. Huang, Recycling Lead and transparent conductors from perovskite solar modules, Nat. Commun. 12 (2021) 1-10. https://doi.org/10.1038/s41467-020-20314-w
[25] F. Yang, J. Liu, X. Wang, K. Tanaka, K. Shinokita, Y. Miyauchi, A. Wakamiya, K. Matsuda, Planar perovskite solar cells with high efficiency and fill factor obtained using two-step growth process, ACS Appl. Mater. Interfaces. 11 (2019) 15680-15687. https://doi.org/10.1021/acsami.9b02948
[26] H. Zhang, J. Xiao, J. Shi, H. Su, Y. Luo, D. Li, H. Wu, Y.B. Cheng, Q. Meng, Self‐adhesive macroporous carbon electrodes for efficient and stable perovskite solar cells, Adv. Funct. Mater. 28 (2018) 1802985. https://doi.org/10.1002/adfm.201802985
[27] Z. Ku, X. Xia, H. Shen, N.H. Tiep, H.J. Fan, A mesoporous Nickel counter electrode for printable and reusable perovskite solar cells, Nanoscale 7 (2015) 13363-13368. https://doi.org/10.1039/C5NR03610K
[28] Z. Li, Y. Zhao, X. Wang, Y. Sun, Z. Zhao, Y. Li, H. Zhou, Q. Chen, Cost analysis of perovskite tandem photovoltaics, Joule 2 (2018) 1559-1572. https://doi.org/10.1016/j.joule.2018.05.001
[29] M. Cai, Y. Wu, H. Chen, X. Yang, Y. Qiang, L. Han, Cost‐performance analysis of perovskite solar modules, Adv. Sci. 4 (2017) 1600269. https://doi.org/10.1002/advs.201600269
[30] Z. Song, C.L. McElvany, A.B. Phillips, I. Celik, P.W. Krantz, S.C. Watthage, G.K. Liyanage, D. Apul, M.J. Heben, A technoeconomic analysis of perovskite solar module manufacturing with low-cost materials and techniques, Energy Environ. Sci. 10 (2017) 1297-1305. https://doi.org/10.1039/C7EE00757D
[31] N.L. Chang, A.W.Y.H. Baillie, D. Vak, M. Gao, M.A. Green, R.J. Egan, Manufacturing cost and market potential analysis of demonstrated roll to-roll perovskite photovoltaic cell processes, Sol. Energy Mater. Sol. Cells 174 (2018) 314-324. https://doi.org/10.1016/j.solmat.2017.08.038
[32] A. Louwen, W.V. Sark, R. Schropp, A. Faaij, A cost roadmap for Silicon heterojunction solar cells, Sol. Energy Mater. Sol. Cells. 147 (2016) 295 314. https://doi.org/10.1016/j.solmat.2015.12.026