Perovskite Based Ferroelectric Materials for Energy Storage Devices
M. Rizwan, A. Ayub, T. Fatama, H. Hameed, Q. Ali, K. Aslam, T. Hashmi
World’s energy crisis has led to scrupulous research in the field of energy harvesting. Ferroelectrics have become the elite choice for energy storage applications such as in capacitors, transducers and sensors owing to their exciting properties such as ferroelectricity, remnant polarization and dielectric properties and high conversion efficiencies. The objective of this chapter is to elaborate the energy storage properties of ferroelectric perovskites as it is a necessity to construct such devices to meet the increasing demand of energy renewable resources. Lead based and lead-free ferroelectrics and various ferroelectric based energy storage devices as well as the ways to optimize their energy storage density are meticulously discussed.
Keywords
Ferroelectricity, Capacitors, Dielectrics, High Storage Density, Fuel Cells, Perovskite Solar Cells (PSCs), Transport Properties
Published online 10/15/2023, 22 pages
Citation: M. Rizwan, A. Ayub, T. Fatama, H. Hameed, Q. Ali, K. Aslam, T. Hashmi, Perovskite Based Ferroelectric Materials for Energy Storage Devices, Materials Research Foundations, Vol. 151, pp 67-88, 2023
DOI: https://doi.org/10.21741/9781644902738-3
Part of the book on Perovskite based Materials for Energy Storage Devices
References
[1] B. Saparov, D.B. Mitzi, Organic-inorganic perovskites: Structural versatility for functional materials design, Chem. Rev. 116 (2016) 4558-4596. https://doi.org/10.1021/acs.chemrev.5b00715
[2] M.K. Assadi, S. Bakhoda, R. Saidur, H. Hanaei, Recent progress in perovskite solar cells, Renew. Sust. Energy Rev. 81 (2018) 2812-2822. https://doi.org/10.1016/j.rser.2017.06.088
[3] P.R. Varma, Low-dimensional perovskites, in: S. Thomas, A. Thankappan (Eds.), Perovskite Photovoltaics, Elsevier, 2018, pp. 197-229. https://doi.org/10.1016/B978-0-12-812915-9.00007-1
[4] V.M. Goldschmidt, Die Gesetze der Krystallo Chemie, Naturwissenschaften. 14 (1926 ) 477-485. https://doi.org/10.1007/BF01507527
[5] A.R. Chakhmouradian, R.H. Mitchell, Compositional variation of perovskite-group minerals from the Khibina complex, Kola Peninsula, Russia, Canad Mineral. 36 (1998) 953-969.
[6] J.W. Anthony, R.A. Bideaux, K.W. Bladh, M.C. Nichols, Handbook of Mineralogy, Vol. 1. Mineral. Data. Publ., Cambridge, 2001, pp. 152-153.
[7] M.E. Lines, A.M. Glass, Principles and Applications of Ferroelectrics and Related Materials, Oxford university press., Britain, 2001, pp. 150-200. https://doi.org/10.1093/acprof:oso/9780198507789.003.0016
[8] L. Yang, X. Kong, F. Li, H. Hao, Z. Cheng, H. Liu, J.-F. Li, S. Zhang, Perovskite Lead-free dielectrics for energy storage applications, Progr. Mater. Sci. 102 (2019) 72-108. https://doi.org/10.1016/j.pmatsci.2018.12.005
[9] J. Valasek, Piezo-electric and allied phenomena in rochelle salt, Phys. Rev. 17 (1921) 475. https://doi.org/10.1103/PhysRev.17.475
[10] F. Bassani, Encyclopedia of Condensed Matter Physics, Elsevier acad. press., Amsterdam, 2005.
[11] P. Bhattacharya, R. Fornari, H. Kamimura, Comprehensive Semiconductor Science and Technology, Newnes., Oxford, 2011, pp. 77-200.
[12] A.P. Barranco, J.S. Guerra, Y.G. Abreu, I.C. dos Reis, Perovskite layer-structured ferroelectrics, in: B.D. Stojanovic (Eds.), Magnetic, Ferroelectric, and Multiferroic Metal Oxides, Elsevier, 2018, pp. 71-92. https://doi.org/10.1016/B978-0-12-811180-2.00004-9
[13] M.Y. Zhuravlev, R.F. Sabirianov, S. Jaswal, E.Y. Tsymbal, Giant electroresistance in ferroelectric tunnel junctions, Phys. Rev. Lett. 94 (2005) 246750- 246802. https://doi.org/10.1103/PhysRevLett.94.246802
[14] A. Kakekhani, S.I. Beigi, Ferroelectric-based catalysis: Switchable surface chemistry, ACS Catalysis. 5 (2015) 4537-4545. https://doi.org/10.1021/acscatal.5b00507
[15] L. Zhang, J. Miao, J. Li, Q. Li, Halide perovskite materials for energy storage applications, Adv. Funct. Mater. 30 (2020) 2003598- 2003653. https://doi.org/10.1002/adfm.202003598
[16] H. Zhang, T. Wei, Q. Zhang, W. Ma, P. Fan, D. Salamon, S.-T. Zhang, B. Nan, H. Tan, Z.-G. Ye, A review on the development of Lead-free ferroelectric energy-storage ceramics and multilayer capacitors, J. Mater. Chem: C, 8 (2020) 16648-16667. https://doi.org/10.1039/D0TC04381H
[17] H. Palneedi, M. Peddigari, A. Upadhyay, J.P. Silva, G.-T. Hwang, J. Ryu, Lead-based and Lead-free ferroelectric ceramic capacitors for electrical energy storage, in: D. Maurya, A. Pramanick, D. Viehland (Eds.), Ferroelectric Materials for Energy Harvesting and Storage, Elsevier, 2021, pp. 279-356. https://doi.org/10.1016/B978-0-08-102802-5.00009-1
[18] R.N. Perumal, V. Athikesavan, Investigations on electrical and energy storage behavior of PZN-PT, PMN-PT, PZN-PMN-PT piezoelectric solid solution, J. Mater. Sci. : Mater. Electron. 30 (2019) 902-913. https://doi.org/10.1007/s10854-018-0361-x
[19] E. Brown, C. Ma, J. Acharya, B. Ma, J. Wu, J. Li, Controlling dielectric and relaxor-ferroelectric properties for energy storage by tuning Pb0.92 La0.08Zr0.52Ti0.48O3 film thickness, ACS Appl. Mater. Interfaces 6 (2014) 22417-22422. https://doi.org/10.1021/am506247w
[20] J. Koruza, L.K. Venkataraman, B. Malič, Lead-free perovskite ferroelectrics, in: B.D. Stojanovic (Eds.), Magnetic, Ferroelectric, and Multiferroic Metal Oxides, Elsevier, 2018, pp. 51-69. https://doi.org/10.1016/B978-0-12-811180-2.00003-7
[21] L. Jin, F. Li, S. Zhang, Decoding the fingerprint of ferroelectric loops: Comprehension of the material properties and structures, in: L. Jin (Eds.), Progress in Advanced Dielectrics, World Scientific, 2020, pp. 21-104. https://doi.org/10.1142/9789811210433_0002
[22] R. Folkson, Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance: Towards Zero Carbon Transportation, second ed., Elsevier, 2014.
[23] I. Dincer, M.A. Rosen, Thermal Energy Storage Systems and Applications, third ed., John Wiley & Sons., Hoboken, 2021. https://doi.org/10.1016/B978-0-12-824372-5.00009-9
[24] Wind Power Engineering, An overview of 6 energy storage methods. https://www.windpowerengineering.com/an-overview-of-6-energy-storage-methods/
[25] P. Breeze, Power System Energy Storage Technologies, first ed., Academic Press, 2018. https://doi.org/10.1016/B978-0-12-812902-9.00008-0
[26] H.W. Xiang, The Corresponding-States Principle and its Practice: Thermodynamic, Transport and Surface Properties of Fluids, Elsevier, Amsterdem, 2005. https://doi.org/10.1016/B978-044452062-3/50005-1
[27] I. Okada, Ionic transport in molten salts, in: F. Lantelme, H. Groult (Eds.), Molten Salts Chemistry, Elsevier, 2013, pp. 79-100. https://doi.org/10.1016/B978-0-12-398538-5.00005-6
[28] A. Gold, Transport properties of Silicon/Silicon-Germanium (si/sige) nanostructures at low temperatures, in: Y. Shiraki, N. Usami (Eds.), Silicon-Germanium (SiGe) nanostructures, Elsevier, 2011, pp. 361-398. https://doi.org/10.1533/9780857091420.3.361
[29] R. Shepherd, D. Kania, L. Jones, D. Schneider, R. Stewart, The measurement of transport properties in strongly coupled plasmas, in: S. Ichimaru (Eds.), Strongly Coupled Plasma Physics, Elsevier, 1990, pp. 433-437. https://doi.org/10.1016/B978-0-444-88363-6.50059-5
[30] H. Tang, Y.-C. Hu, X.-Y. Chen, X.-D. Jian, X.-B. Zhao, Y.-B. Yao, T. Tao, B. Liang, X.-G. Tang, S.-G. Lu, Enhancement of energy-storage properties in BiFeO3-based Lead-free bulk ferroelectrics, Ceram. Inter. 48 (2022) 4-10. https://doi.org/10.1016/j.ceramint.2022.02.229
[31] L. Chen, X. Fan, E. Hu, X. Ji, J. Chen, S. Hou, T. Deng, J. Li, D. Su, X. Yang, Achieving high energy density through increasing the output voltage: A highly reversible 5.3 V battery, Chem. 5 (2019) 896-912. https://doi.org/10.1016/j.chempr.2019.02.003
[32] J.M. Ball, M.M. Lee, A. Hey, H.J. Snaith, Low-temperature processed meso-superstructured to thin-film perovskite solar cells, Energy. Environ. Sci. 6 (2013) 1739-1743. https://doi.org/10.1039/c3ee40810h
[33] W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange, Science. 348 (2015)1234-1237. https://doi.org/10.1126/science.aaa9272
[34] X. Chang, W. Li, L. Zhu, H. Liu, H. Geng, S. Xiang, J. Liu, H. Chen, Carbon-based CsPbBr3 perovskite solar cells: All-ambient processes and high thermal stability, ACS Appl. Mater. Interfaces. 8 (2016) 33649-33655. https://doi.org/10.1021/acsami.6b11393
[35] A.F. Xu, R.T. Wang, L.W. Yang, N. Liu, Q. Chen, R. LaPierre, N.I. Goktas, G. Xu, Pyrrolidinium containing perovskites with thermal stability and water resistance for photovoltaics, J. Mater. Chem: C, 7 (2019) 11104-11108. https://doi.org/10.1039/C9TC02800E
[36] H. Zhu, K. Miyata, Y. Fu, J. Wang, P.P. Joshi, D. Niesner, K.W. Williams, S. Jin, X.-Y. Zhu, Screening in crystalline liquids protects energetic carriers in hybrid perovskites, Science 353 (2016) 1409-1413. https://doi.org/10.1126/science.aaf9570
[37] X.-Y. Zhu, V. Podzorov, Charge carriers in hybrid organic-inorganic Lead halide perovskites might be protected as large polarons, ACS Publ. 6 (2015) 4758-4761. https://doi.org/10.1021/acs.jpclett.5b02462
[38] K. Miyata, D. Meggiolaro, M.T. Trinh, P.P. Joshi, E. Mosconi, S.C. Jones, F.D. Angelis, X.-Y. Zhu, Large polarons in Lead halide perovskites, Sci. Adv. 3 (2017) 1701200-1701217. https://doi.org/10.1126/sciadv.1701217
[39] S. Wei, X. Xu, Boosting photocatalytic water oxidation reactions over Strontium Tantalum Oxynitride by structural laminations, Appl. Catal. B: Environ. 228 (2018) 10-18. https://doi.org/10.1016/j.apcatb.2018.01.071
[40] A.A. Ismail, D.W. Bahnemann, Mesoporous Titania photocatalysts: Preparation, characterization and reaction mechanisms, J. Mater. Chem. 21 (2011) 11686-11707. https://doi.org/10.1039/c1jm10407a
[41] M. Addamo, V. Augugliaro, A.D. Paola, E.G. López, V. Loddo, G. Marci, R. Molinari, L. Palmisano, M. Schiavello, Preparation, characterization, and photoactivity of polycrystalline nanostructured TiO2 catalysts, J. Phys. Chem: B, 108 (2004) 3303-3310. https://doi.org/10.1021/jp0312924