Organic-Inorganic Perovskite Based Solar Cells

$45.00

Organic-Inorganic Perovskite Based Solar Cells

M. Rizwan, A. Ayub, S. Urossha, M.A. Salam, M.W. Yasin, A. Manzoor, S. Mumtaz

Traditional silicon-based solar cells have dominated the photovoltaic industry for quite some time now. Alternatives of these solar cells are being researched such as hybrid organic-inorganic perovskite-based solar cells, which are cost-effective and have the potential to achieve higher efficiency and performance. The characteristics of these perovskites can be controlled via substitution at A, B, or X sites since all these have a great impact on the overall performance. The components of perovskite solar cells (PSC) along with materials used for these layers, and fabrication techniques that give the optimized efficiency, challenges, and future perspective faced by perovskite solar cells are also deliberated.

Keywords
Lectron Transport Layer, Spin Coating, Organometallic Materials, One-Step Deposition Perovskites, Hole Transport Materials

Published online 10/15/2023, 32 pages

Citation: M. Rizwan, A. Ayub, S. Urossha, M.A. Salam, M.W. Yasin, A. Manzoor, S. Mumtaz, Organic-Inorganic Perovskite Based Solar Cells, Materials Research Foundations, Vol. 151, pp 1-32, 2023

DOI: https://doi.org/10.21741/9781644902738-1

Part of the book on Perovskite based Materials for Energy Storage Devices

References
[1] M.K. Assadi, S. Bakhoda, R. Saidur, H. Hanaei, Recent progress in perovskite solar cells, Renew. Sust. Energ. Rev. 81 (2018) 2812-2822. https://doi.org/10.1016/j.rser.2017.06.088
[2] J.M. Ball, M.M. Lee, A. Hey, H.J. Snaith, Low-temperature processed meso-superstructured to thin-film perovskite solar cells, Energy & Enviro. Sci. 6 (2013) 1739-1743. https://doi.org/10.1039/c3ee40810h
[3] D. Banerjee, K.K. Chattopadhyay, Hybrid inorganic organic perovskites: A low-cost-efficient optoelectronic material, in: S. Thomas, A. Thankappan (Eds.), Perovskite Photovoltaics, Elsevier, 2018, pp. 123-162. https://doi.org/10.1016/B978-0-12-812915-9.00005-8
[4] K.P. Bhandari, R.J. Ellingson, An overview of hybrid organic-inorganic metal halide perovskite solar cells, in: T.M. Letcher, V.M. Fthenakis (Eds.), A Comprehensive Guide to Solar Energy Systems, Elsevier, 2018, pp. 233-254. https://doi.org/10.1016/B978-0-12-811479-7.00011-7
[5] P.P. Boix, K. Nonomura, N. Mathews, S.G. Mhaisalkar, Current progress and future perspectives for organic/inorganic perovskite solar cells, Mater. Today. 17 (2014) 16-23. https://doi.org/10.1016/j.mattod.2013.12.002
[6] P.P. Boix, K. Nonomura, N. Mathews, S.G. Mhaisalkar, Current progress and future perspectives for organic/inorganic perovskite solar cells, Mater. Today. 17 (2014) 5-20. https://doi.org/10.1016/j.mattod.2013.12.002
[7] J. Burschka, N. Pellet, S.-J. Moon, R.H. Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature. 499 (2013) 316-319. https://doi.org/10.1038/nature12340
[8] L. Calió, S. Kazim, M. Grätzel, S. Ahmad, Hole‐transport materials for perovskite solar cells, Angew. Chem. Int. Ed. 55 (2016) 14522-14545. https://doi.org/10.1002/anie.201601757
[9] B. Chaudhary, T.M. Koh, B. Febriansyah, A. Bruno, N. Mathews, S.G. Mhaisalkar, C. Soci, Mixed-dimensional Naphthyl Methyl Ammonium-Methylammonium Lead Iodide perovskites with improved thermal stability, Sci. Repo. 10 (2020) 1-11. https://doi.org/10.1038/s41598-019-56847-4
[10] C.-H. Chiang, Z.-L. Tseng, C.-G. Wu, Planar heterojunction perovskite/PC71BM solar cells with enhanced open-circuit voltage via a (2/1)-step spin-coating process, J. Mater. Chem: A, 2 (2014) 15897-15903. https://doi.org/10.1039/C4TA03674C
[11] D.H. Cho, H.W. Choi, Fabrication and characterization of mixed Lead halide thin films for perovskite solar cells, Mol. Cryst. Liq. Cryst. 654 (2017) 201-208. https://doi.org/10.1080/15421406.2017.1358045
[12] B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D’Haen, L. D’Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, Intrinsic thermal instability of Methylammonium Lead trihalide perovskite, Adv. Energy Mater. 5 (2015) 1500400-1500477. https://doi.org/10.1002/aenm.201500477
[13] V. D’innocenzo, G. Grancini, M.J. Alcocer, A.R.S. Kandada, S.D. Stranks, M.M. Lee, G. Lanzani, H.J. Snaith, A. Petrozza, Excitons versus free charges in organo-Lead trihalide perovskites, Nature Commun. 5 (2014) 1-6. https://doi.org/10.1038/ncomms4586
[14] A. Dualeh, P. Gao, S.I. Seok, M.K. Nazeeruddin, M. Grätzel, Thermal behavior of Methylammonium Lead-trihalide perovskite photovoltaic light harvesters, Chem. Mater. 26 (2014) 6160-6164. https://doi.org/10.1021/cm502468k
[15] G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, H.J.J.E. Snaith, E. Science, Formamidinium Lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells, Energy & Environ. Sci. 7 (2014) 982-988. https://doi.org/10.1039/c3ee43822h
[16] J.M. Frost, A. Walsh, What is moving in hybrid halide perovskite solar cells? Accounts of chemical research, ACS Pub. 49 (2016) 28-535. https://doi.org/10.1021/acs.accounts.5b00431
[17] S.L. Hamukwaya, H. Hao, Z. Zhao, J. Dong, T. Zhong, J. Xing, L. Hao, M.M. Mashingaidze, A review of recent developments in preparation methods for large-area perovskite solar cells, Coatings. 12 (2022) 250- 252. https://doi.org/10.3390/coatings12020252
[18] J.-H. Im, H.-S. Kim, N.-G. Park, Morphology-photovoltaic property correlation in perovskite solar cells: One-step versus two-step deposition of CH3NH3PbI3, Apl. Mater. 2 (2014) 081497- 081510. https://doi.org/10.1063/1.4891275
[19] M. Jamal, M. Bashar, A.M. Hasan, Z.A. Almutairi, H.F. Alharbi, N.H. Alharthi, M.R. Karim, H. Misran, N. Amin, K.B. Sopian, Fabrication techniques and morphological analysis of perovskite absorber layer for high-efficiency perovskite solar cell: A review, Renew. Sus. Energy Rev. 98 (2018) 469-488. https://doi.org/10.1016/j.rser.2018.09.016
[20] P. Kajal, K. Ghosh, S. Powar, Manufacturing techniques of perovskite solar cells, in: H. Tyagi, A.K. Agarwal, P.R. Chakraborty, S. Powar (Eds.), Applications of Solar Energy, Springer, 2018, pp. 341-364. https://doi.org/10.1007/978-981-10-7206-2_16
[21] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, ACS Pub. 131 (2009) 6050-6051. https://doi.org/10.1021/ja809598r
[22] D. Li, J. Shi, Y. Xu, Y. Luo, H. Wu, Q. Meng, Inorganic-organic halide perovskites for new photovoltaic technology, National Sci. Rev. 5 (2018) 559-576. https://doi.org/10.1093/nsr/nwx100
[23] D. Lin, T. Zhang, J. Wang, M. Long, F. Xie, J. Chen, B. Wu, T. Shi, K. Yan,W. Xie, Stable and scalable 3D-2D planar heterojunction perovskite solar cells via vapor deposition, Nano Energy. 59 (2019) 619-625. https://doi.org/10.1016/j.nanoen.2019.03.014
[24] L. Ma, W. Li, K. Yang, J. Bi, J. Feng, J. Zhang, Z. Yan, X. Zhou, C. Liu, Y. Ji, A-or X-site mixture on mechanical properties of APbX3 perovskite single crystals, APL Mater. 9 (2021) 041098-041112. https://doi.org/10.1063/5.0015569
[25] K. Mahmood, S. Sarwar, M.T. Mehran, Current status of electron transport layers in perovskite solar cells: Materials and properties, RSC Adv. 7 (2017) 17044-17062. https://doi.org/10.1039/C7RA00002B
[26] M. MGreen, E. Dunlop, D. Levi, J.H. Ebinger, M. Yoshita, A.H. Baillie, Solar cell efficiency tables (version 54), Prog. Photovolt. Res. Appl. 27 (2019) 565-575. https://doi.org/10.1002/pip.3171
[27] G. Niu, X. Guo, L. Wang, Review of recent progress in chemical stability of perovskite solar cells, J. Mater. Chem: A, 3 (2015) 8970-8980. https://doi.org/10.1039/C4TA04994B
[28] G. Niu, W. Li, F. Meng, L. Wang, H. Dong, Y. Qiu, Study on the stability of CH3NH3PbI3 films and the effect of post-modification by Aluminum oxide in all-solid-state hybrid solar cells, J. Mater. Chem: A, 2 (2014) 705-710. https://doi.org/10.1039/C3TA13606J
[29] J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S.I. Seok, Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells, Nano Lett. 13 (2013) 1764-1769. https://doi.org/10.1021/nl400349b
[30] M.F.M. Noh, C.H. Teh, R. Daik, E.L. Lim, C.C. Yap, M.A. Ibrahim, N.A. Ludin, A.R.M. Yusoff, J. Jang, M.A.M. Teridi, The architecture of the electron transport layer for a perovskite solar cell, J. Phys. Chem: C, 6 (2018) 682-712. https://doi.org/10.1039/C7TC04649A
[31] L.K. Ono, E.J.J.-Perez, Y. Qi, Progress on perovskite materials and solar cells with mixed cations and halide anions, ACS Appl. Mater. & Interfaces. 9 (2017) 30197-30246. https://doi.org/10.1021/acsami.7b06001
[32] N.-G. Park, M. Grätzel, T. Miyasaka, K. Zhu, K. Emery, Towards stable and commercially available perovskite solar cells, Nature Energy. 1 (2016) 1-8. https://doi.org/10.1038/nenergy.2016.152
[33] A. Poglitsch, D. Weber, Dynamic disorder in Methylammonium Trihalogenoplumbates (II) observed by millimeter‐wave spectroscopy, AIP. 87 (1987) 6373-6378. https://doi.org/10.1063/1.453467
[34] A. Purabgola, B. Kandasubramanian, Thin films for planar solar cells of organic-inorganic perovskite composites, in: I. Khan, A. Khan, M. A. Khan, S. Khan, F. Verpoort, A. Umar (Eds.), Hybrid Perovskite Composite Materials, Elsevier, 2021, pp. 95-115. https://doi.org/10.1016/B978-0-12-819977-0.00003-2
[35] R. Sheng, A.H. Baillie, S. Huang, S. Chen, X. Wen, X. Hao, M.A. Green, Methylammonium Lead Bromide perovskite-based solar cells by vapor-assisted deposition, J. Phys. Chem. Lett. 119 (2015) 3545-3549. https://doi.org/10.1021/jp512936z
[36] Z. Shi, A.H. Jayatissa, Perovskites-based solar cells: A review of recent progress, materials and processing methods, Mater. 1 (2018) 700- 729. https://doi.org/10.3390/ma11050729
[37] H.J. Snaith, A. Abate, J.M. Ball, G.E. Eperon, T. Leijtens, N.K. Noel, S.D. Stranks, J.T.-W. Wang, K. Wojciechowski, W. Zhang, Anomalous hysteresis in perovskite solar cells, J. Phys. Chem. Lett: T, 5 (2014) 1511-1515. https://doi.org/10.1021/jz500113x
[38] W. Tress, N. Marinova, O. Inganäs, M.K. Nazeeruddin, S.M. Zakeeruddin, M. Graetzel, The role of the hole-transport layer in perovskite solar cells – Reducing recombination and increasing absorption in 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), IEEE. (2014) pp. 1563-1566. https://doi.org/10.1109/PVSC.2014.6925216
[39] W. Tress, N. Marinova, T. Moehl, S.M. Zakeeruddin, M.K. Nazeeruddin, M. Grätzel, Understanding the rate-dependent J-V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: The role of a compensated electric field, Energy & Environ. Sci. 8 (2015) 995-1004. https://doi.org/10.1039/C4EE03664F
[40] E.L. Unger, A.R. Bowring, C.J. Tassone, V.L. Pool, A. G.-Parker, R. Cheacharoen, K.H. Stone, E.T. Hoke, M.F. Toney, M.D. McGehee, Chloride in Lead Chloride-derived organo-metal halides for perovskite-absorber solar cells, ACS Publ. 26 (2014) 7158-7165. https://doi.org/10.1021/cm503828b
[41] H. Wang, M. Zhou, P. Choudhury, H. Luo, Perovskite oxides as bifunctional oxygen electrocatalysts for oxygen evolution/reduction reactions: A mini review, Appl. Mater. Today. 16 (2019) 56-71. https://doi.org/10.1016/j.apmt.2019.05.004
[42] Q. Wang, N. Phung, D.D. Girolamo, P. Vivo, A. Abate, Enhancement in lifespan of halide perovskite solar cells, Energy & Environ. Sci. 12 (2019) 865-886. https://doi.org/10.1039/C8EE02852D
[43] J. Wei, Y. Zhao, H. Li, G. Li, J. Pan, D. Xu, Q. Zhao, D. Yu, Hysteresis analysis based on the ferroelectric effect in hybrid perovskite solar cells, J. Phy. Chem. Lett. 5 (2014) 3937-3945. https://doi.org/10.1021/jz502111u
[44] W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange, Science. 348 (2015) 234-1237. https://doi.org/10.1126/science.aaa9272
[45] X. Zhao, N.-G. Park. Stability issues on perovskite solar cells, Photonics. 2 (2015) 1139-1151https://doi.org/10.3390/photonics2041139
[46] D. Zhou, T. Zhou, Y. Tian, X. Zhu, Y. Tu, Perovskite-based solar cells: Materials, methods, and future perspectives, J. Nanomaterials. 8148072 (2018) 1-5https://doi.org/10.1155/2018/8148072