Workload and stress evaluation in advanced manufacturing systems
Graziana Blandino, Francesca Montagna, Marco Cantamessa
download PDFAbstract. Industry 5.0 emphasizes the development of human-centred work environments, shifting the focus from technologies embedded in manufacturing systems to workers. Efforts in the literature focus on operators’ well-being for workstation configuration or on stress in collaborative environments, but few papers consider stress induced by management practices in advanced manufacturing contexts, although “lean” or “agile” for instance could in principle lead to more stressful workplaces. This paper reviews the literature, evaluating the mental and physical workload of production line operators who perform mentally demanding tasks and experience stress in advanced manufacturing systems. The goal is to design and to perform a pilot test on an innovative and rigorous research protocol, to be adopted in ‘non-fictional’ experiments, and able to compare push vs pull settings and their effects on workers’ workload and stress (WLS). The results will highlight new sources of stress, contributing to the development of human-centred and socially sustainable manufacturing systems.
Keywords
Ergonomics, Smart Manufacturing, Industry 4.0/5.0
Published online 9/5/2023, 9 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: Graziana Blandino, Francesca Montagna, Marco Cantamessa, Workload and stress evaluation in advanced manufacturing systems, Materials Research Proceedings, Vol. 35, pp 53-61, 2023
DOI: https://doi.org/10.21741/9781644902714-7
The article was published as article 7 of the book Italian Manufacturing Association Conference
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] J. Alves, T. M. Lima, P. D. Gaspar, Is Industry 5.0 a Human-Centred Approach? A Systematic Review, Processes, 11.1 (2023) 193. https://doi.org/10.3390/pr11010193
[2] M. C. Zizic, M. Mladineo, N. Gjeldum, and L. Celent, From Industry 4.0 towards Industry 5.0: A Review and Analysis of Paradigm Shift for the People, Organization and Technology, Energies, 15.14 (2022) 5221. https://doi.org/10.3390/en15145221
[3] J. Leng, W. Sha, B. Wang, P. Zheng, C. Zhuang, Q. Liu, L. Wang, Industry 5.0: Prospect and retrospect, J Manuf Syst, 65 (2022) 279-295. https://doi.org/10.1016/j.jmsy.2022.09.017
[4] V. Villani, M. Gabbi, L. Sabattini, Promoting operator’s wellbeing in Industry 5.0: detecting mental and physical fatigue, in Conference Proceedings – IEEE International Conference on Systems, Man and Cybernetics, 2022 (2022), 2030-2036. https://doi.org/10.1109/SMC53654.2022.9945324
[5] C. Setz, B. Arnrich, J. Schumm, R. la Marca, G. Tröster, U. Ehlert, Discriminating stress from cognitive load using a wearable eda device, IEEE Transactions on Information Technology in Biomedicine, 14.2 (2010) 410-417. https://doi.org/10.1109/TITB.2009.2036164
[6] A. Brunzini, M. Peruzzini, F. Grandi, R. K. Khamaisi, M. Pellicciari, A preliminary experimental study on the workers’ workload assessment to design industrial products and processes, Applied Sciences, 11.24 (2021) 12066. https://doi.org/10.3390/app112412066
[7] P. Thorvald, J. Lindblom, R. Andreasson, On the development of a method for cognitive load assessment in manufacturing, Robot Comput Integr Manuf, 59 (2019) 252-266. https://doi.org/10.1016/j.rcim.2019.04.012
[8] E. Giagloglou, P. Mijovic, S. Brankovic, P. Antoniou, I. Macuzic, Cognitive status and repetitive working tasks of low risk, Saf Sci, 119 (2019) 292-299. https://doi.org/10.1016/j.ssci.2017.10.004
[9] M. Lagomarsino, M. Lorenzini, E. de Momi, A. Ajoudani, An Online Framework for Cognitive Load Assessment in Industrial Tasks, Robot Comput Integr Manuf, 78 (2022). https://doi.org/10.1016/j.rcim.2022.102380
[10] H. Atici-Ulusu, Y. D. Ikiz, O. Taskapilioglu, T. Gunduz, Effects of augmented reality glasses on the cognitive load of assembly operators in the automotive industry, Int J Comput Integr Manuf, 34.5 (2021) 487-499. https://doi.org/10.1080/0951192X.2021.1901314
[11] M. Drouot, N. le Bigot, E. Bricard, J. L. de Bougrenet, V. Nourrit, Augmented reality on industrial assembly line: Impact on effectiveness and mental workload, Appl Ergon, 103 (2022) 103793. https://doi.org/10.1016/j.apergo.2022.103793
[12] M. Petrovic, A. M. Vukicevic, M. Djapan, A. Peulic, M. Jovicic, N. Mijailovic, K. Jovanovic, Experimental Analysis of Handcart Pushing and Pulling Safety in an Industrial Environment by Using IoT Force and EMG Sensors: Relationship with Operators’ Psychological Status and Pain Syndromes, Sensors, 22.19 (2022) 7467. https://doi.org/10.3390/s22197467
[13] F. N. Biondi, A. Cacanindin, C. Douglas, J. Cort, Overloaded and at Work: Investigating the Effect of Cognitive Workload on Assembly Task Performance, 63.5 (2021) 813-820. https://doi.org/10.1177/0018720820929928
[14] D. M. Wegner, Stress and Mental Control’. Stress and mental control. Handbook of life stress, cognition and health, In S. Fisher & J. Reason (Eds.), 1988, 683-697.
[15] M. Peruzzini, F. Grandi, M. Pellicciari, Exploring the potential of Operator 4.0 interface and monitoring, Comput Ind Eng, 139 (2020) 105600. https://doi.org/10.1016/j.cie.2018.12.047
[16] V. K. Rao Pabolu, D. Shrivastava, M. S. Kulkarni, A Dynamic System to Predict an Assembly Line Worker’s Comfortable Work-Duration Time by Using the Machine Learning Technique, in Procedia CIRP, 106 (2022) 270-275. https://doi.org/10.1016/j.procir.2022.02.190
[17] E. M. Argyle, A. Marinescu, M. L. Wilson, G. Lawson, S. Sharples, Physiological indicators of task demand, fatigue, and cognition in future digital manufacturing environments, International Journal of Human Computer Studies, 145 (2021) 102522. https://doi.org/10.1016/j.ijhcs.2020.102522
[18] R. Castaldo, P. Melillo, U. Bracale, M. Caserta, M. Triassi, L. Pecchia, Acute mental stress assessment via short term HRV analysis in healthy adults: A systematic review with meta-analysis, Biomedical Signal Processing and Control, 18 (2015) 370-377. https://doi.org/10.1016/j.bspc.2015.02.012
[19] F. N. Biondi, B. Saberi, F. Graf, J. Cort, P. Pillai, B. Balasingam, Distracted worker: Using pupil size and blink rate to detect cognitive load during manufacturing tasks, Appl Ergon, 106 (2023) 103867. https://doi.org/10.1016/j.apergo.2022.103867
[20] M. Ciccarelli, A. Papetti, M. Germani, A. Leone, G. Rescio, Human work sustainability tool, J Manuf Syst, 62 (2022) 76-86. https://doi.org/10.1016/j.jmsy.2021.11.011
[21] R. Gervasi, K. Aliev, L. Mastrogiacomo, F. Franceschini, User Experience and Physiological Response in Human-Robot Collaboration: A Preliminary Investigation, Journal of Intelligent and Robotic Systems: Theory and Applications, 106.2 (2022) 36. https://doi.org/10.1007/s10846-022-01744-8
[22] A. Nicolò, C. Massaroni, E. Schena, M. Sacchetti, The importance of respiratory rate monitoring: From healthcare to sport and exercise, Sensors, 20.21 (2020) 1-45. https://doi.org/10.3390/s20216396
[23] A. T. Eyam, W. M. Mohammed, J. L. Martinez Lastra, Emotion-driven analysis and control of human-robot interactions in collaborative applications, Sensors, 21(2021) 4626. https://doi.org/10.3390/s21144626
[24] J. Kang, K. Babski-Reeves, (2009). Evaluation of methods for determining optimal mental workload levels. In IIE Annual Conference. Proceedings, Institute of Industrial and Systems Engineers (IISE) (2009) 913.
[25] S. Chen, J. Epps, Using task-induced pupil diameter and blink rate to infer cognitive load, Hum Comput Interact, 29. 4 (2014) 390-413. https://doi.org/10.1080/07370024.2014.892428
[26] Y. Z. Abd Elgawad, M. I. Youssef, T. M. Nasser, New methodology to detect the effects of emotions on different biometrics in real time, International Journal of Electrical and Computer Engineering, 13.2 (2023) 1358-1366. https://doi.org/10.11591/ijece.v13i2.pp1358-1366
[27] L. Gualtieri, F. Fraboni, M. de Marchi, E. Rauch, Development and evaluation of design guidelines for cognitive ergonomics in human-robot collaborative assembly systems, Appl Ergon, 104 (2022) 103807. https://doi.org/10.1016/j.apergo.2022.103807
[28] D. Cavallo, F. Facchini, G. Mossa, Information-based processing time affected by human age: An objective parameters-based model, in IFAC-PapersOnLine, 54.1 (2021) 7-12. https://doi.org/10.1016/j.ifacol.2021.08.001
[29] J. Morton, A. Zheleva, B.B. Van Acker, W. Durnez, P. Vanneste, C. Larmuseau, K. Bombeke, ‘Danger, high voltage! Using EEG and EOG measurements for cognitive overload detection in a simulated industrial context’, Appl Ergon, 102 (2022) 103763. https://doi.org/10.1016/j.apergo.2022.103763
[30] A. Widyanti, W. Larutama, The relation between performance of lean Manufacturing and employee’ mental workload, in IEEE International Conference on Industrial Engineering and Engineering Management, 2016 (2016) 252-256. https://doi.org/10.1109/IEEM.2016.7797875
[31] S. Rubio, E. Díaz, J. Martín, J. M. Puente, Evaluation of Subjective Mental Workload: A Comparison of SWAT, NASA-TLX, and Workload Profile Methods, Applied Psychology, 53.1 (2004) 61-86. https://doi.org/10.1111/j.1464-0597.2004.00161.x
[32] V. Kopp, M. Holl, M. Schalk, U. Daub, E. Bances, B. Garcia, U. Schneider, Exoworkathlon: A prospective study approach for the evaluation of industrial exoskeletons, Wearable Technologies, 3 (2022) e22. https://doi.org/10.1017/wtc.2022.17
[33] M. Mailliez, S. Hosseini, O. Battaiä, R. N. Roy, Decision Support System-like Task to Investigate Operators’ Performance in Manufacturing Environments, in IFAC-PapersOnLine, 53 (2020) 324-329. https://doi.org/10.1016/j.ifacol.2021.04.110
[34] V. di Pasquale, S. Miranda, W. P. Neumann, Ageing and human-system errors in manufacturing: a scoping review, International Journal of Production Research, 58.15 (2020) 4716-4740. https://doi.org/10.1080/00207543.2020.1773561
[35] A. M. Abbasi, M. Motamedzade, M. Aliabadi, R. Golmohammadi, L. Tapak, Combined effects of noise and air temperature on human neurophysiological responses in a simulated indoor environment, Appl Ergon, 88 (2020) 103189. https://doi.org/10.1016/j.apergo.2020.103189
[36] J. R. Kelly, J. E. Mcgrath, Effects of Time Limits and Task Types on Task Performance and Interaction of Four-Person Groups, 49.2 (1985) 395. https://doi.org/10.1037/0022-3514.49.2.395
[37] International Labour Organization. Workplace Stress: A Collective Challenge. International Labour Office: Geneva, Switzerland (2016).