A feasibility study to improve the processability of pure copper produced via laser powder bed fusion process
Abdollah Saboori, Marta Roccetti Campagnoli, Manuela Galati, Flaviana Calignano, Luca Iuliano
download PDFAbstract. Additive Manufacturing (AM) refers to a family of layer-upon-layer building technologies capable of producing geometrically intricate parts in a single step. Today, the processability of many materials through AM is under development. One of the most interesting studies is the production of copper parts via laser-based technologies. Unluckily, mainly due to the high thermal conductivity and reflectivity of copper, its processability through AM processes is particularly challenging. Thus, in this research, a new material-based solution is proposed to improve the processability of copper through laser powder bed fusion. Therefore, a single scan track analysis is performed on pure copper and mixtures of copper/graphite. The outcomes show that adding graphite could increase copper’s laser absorption and processability.
Keywords
Additive Manufacturing, Copper, Processability, Laser Powder Bed Fusion, Single Scan Tracks
Published online 9/5/2023, 9 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: Abdollah Saboori, Marta Roccetti Campagnoli, Manuela Galati, Flaviana Calignano, Luca Iuliano, A feasibility study to improve the processability of pure copper produced via laser powder bed fusion process, Materials Research Proceedings, Vol. 35, pp 393-401, 2023
DOI: https://doi.org/10.21741/9781644902714-47
The article was published as article 47 of the book Italian Manufacturing Association Conference
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] M. Dadkhah, M.H. Mosallanejad, L. Iuliano, A. Saboori, A Comprehensive Overview on the Latest Progress in the Additive Manufacturing of Metal Matrix Composites: Potential, Challenges, and Feasible Solutions, Acta Metall. Sin. (English Lett. 34 (2021) 1173–1200. https://doi.org/10.1007/s40195-021-01249-7
[2] M. Attaran, The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing, Bus. Horiz. 60 (2017) 677–688. https://doi.org/https://doi.org/10.1016/j.bushor.2017.05.011
[3] A. Saboori, A. Aversa, G. Marchese, S. Biamino, M. Lombardi, P. Fino, Application of Directed Energy Deposition-Based Additive Manufacturing in Repair, Appl. Sci. 9 (2019). https://doi.org/10.3390/app9163316
[4] M.H. Mosallanejad, B. Niroumand, A. Aversa, D. Manfredi, A. Saboori, Laser Powder Bed Fusion in-situ alloying of Ti-5%Cu alloy: Process-structure relationships, J. Alloys Compd. 857 (2021) 157558. https://doi.org/10.1016/j.jallcom.2020.157558
[5] I.O. for S. ISO/ASTM, ASTM 52900: 2015 (ASTM F2792) Additive Manufacturing—General Principles—Terminology, ISO Geneva, Switz. (n.d.).
[6] M. Aristizabal, P. Jamshidi, A. Saboori, S.C. Cox, M.M. Attallah, Laser powder bed fusion of a Zr-alloy: Tensile properties and biocompatibility, Mater. Lett. 259 (2020) 126897. https://doi.org/https://doi.org/10.1016/j.matlet.2019.126897
[7] M.H. Mosallanejad, B. Niroumand, A. Aversa, A. Saboori, In-situ alloying in laser-based additive manufacturing processes: A critical review, J. Alloys Compd. 872 (2021) 159567. https://doi.org/https://doi.org/10.1016/j.jallcom.2021.159567
[8] G. Del Guercio, M. Galati, A. Saboori, Electron beam melting of Ti-6Al-4V lattice structures: correlation between post heat treatment and mechanical properties, Int. J. Adv. Manuf. Technol. 116 (2021) 3535–3547. https://doi.org/10.1007/s00170-021-07619-w
[9] G. Del Guercio, M. Galati, A. Saboori, P. Fino, L. Iuliano, Microstructure and Mechanical Performance of Ti–6Al–4V Lattice Structures Manufactured via Electron Beam Melting (EBM): A Review, Acta Metall. Sin. (English Lett. 33 (2020) 183–203. https://doi.org/10.1007/s40195-020-00998-1
[10] S.D. Jadhav, S. Dadbakhsh, J. Vleugels, J. Hofkens, P. Van Puyvelde, S. Yang, J.-P. Kruth, J. Van Humbeeck, K. Vanmeensel, Influence of Carbon Nanoparticle Addition (and Impurities) on Selective Laser Melting of Pure Copper, Materials (Basel). 12 (2019) 2469. https://doi.org/10.3390/ma12152469
[11] A. Saboori, M. Pavese, C. Badini, P. Fino, Development of Al- and Cu-based nanocomposites reinforced by graphene nanoplatelets: Fabrication and characterization, Front. Mater. Sci. 11 (2017). https://doi.org/10.1007/s11706-017-0377-9
[12] A. Saboori, M. Pavese, C. Badini, P. Fino, A Novel Cu–GNPs Nanocomposite with Improved Thermal and Mechanical Properties, Acta Metall. Sin. (English Lett. 31 (2018) 148–152. https://doi.org/10.1007/s40195-017-0643-y
[13] L. Kaden, G. Matthäus, T. Ullsperger, H. Engelhardt, M. Rettenmayr, A. Tünnermann, S. Nolte, Selective laser melting of copper using ultrashort laser pulses, Appl. Phys. A. 123 (2017) 596. https://doi.org/10.1007/s00339-017-1189-6
[14] A. Saboori, S.K. Moheimani, M. Pavese, C. Badini, P. Fino, New Nanocomposite Materials with Improved Mechanical Strength and Tailored Coefficient of Thermal Expansion for Electro-Packaging Applications, Met. (Basel). 7 (2017)
[15] V. Sufiiarov, E. Borisov, I. Polozov, SELECTIVE LASER MELTING OF COPPER ALLOY, Mater. Phys. Mech. 43 (2020) 65–71. https://doi.org/10.18720/MPM.4312020_8
[16] M.A. Lodes, R. Guschlbauer, C. Körner, Process development for the manufacturing of 99.94% pure copper via selective electron beam melting, Mater. Lett. 143 (2015) 298–301. https://doi.org/https://doi.org/10.1016/j.matlet.2014.12.105
[17] A. Popovich, V. Sufiiarov, I. Polozov, E. Borisov, D. Masaylo, A. Orlov, Microstructure and mechanical properties of additive manufactured copper alloy, Mater. Lett. 179 (2016) 38–41. https://doi.org/https://doi.org/10.1016/j.matlet.2016.05.064
[18] M. Roccetti Campagnoli, M. Galati, A. Saboori, On the processability of copper components via powder-based additive manufacturing processes: Potentials, challenges and feasible solutions, J. Manuf. Process. 72 (2021) 320–337. https://doi.org/https://doi.org/10.1016/j.jmapro.2021.10.038
[19] R. Neugebauer, B. Mueller, M. Gebauer, T. Töppel, Additive manufacturing boosts efficiency of heat transfer components, Assem. Autom. 31 (2011) 344–347. https://doi.org/10.1108/01445151111172925
[20] L. Benedetti, C. Comelli, C. Ahrens, Study on Selective Laser Melting of Copper, 2017. https://doi.org/10.26678/ABCM.COBEF2017.COF2017-0148
[21] T.I. El-Wardany, Y. She, V.N. Jagdale, J.K. Garofano, J.J. Liou, W.R. Schmidt, Challenges in Three-Dimensional Printing of High-Conductivity Copper, J. Electron. Packag. 140 (2018). https://doi.org/10.1115/1.4039974
[22] F. Singer, D.C. Deisenroth, D.M. Hymas, M.M. Ohadi, Additively manufactured copper components and composite structures for thermal management applications, in: 2017 16th IEEE Intersoc. Conf. Therm. Thermomechanical Phenom. Electron. Syst., 2017: pp. 174–183. https://doi.org/10.1109/ITHERM.2017.7992469
[23] T.Q. Tran, A. Chinnappan, J.K.Y. Lee, N.H. Loc, L.T. Tran, G. Wang, V. V Kumar, W.A.D.M. Jayathilaka, D. Ji, M. Doddamani, S. Ramakrishna, 3D printing of highly pure copper, Metals (Basel). 9 (2019). https://doi.org/10.3390/met9070756
[24] K. IMAI, T.-T. Ikeshoji, Y. SUGITANI, H. KYOGOKU, Densification of pure copper by selective laser melting process, Mech. Eng. J. (2020). https://doi.org/10.1299/mej.19-00272
[25] F. Sciammarella, M. Gonser, M. Styrcula, Laser Additive Manufacturing of Pure Copper, 2013.
[26] X. Liu, H. Wang, K. Kaufmann, K. Vecchio, Directed energy deposition of pure copper using blue laser, J. Manuf. Process. 85 (2023) 314–322. https://doi.org/https://doi.org/10.1016/j.jmapro.2022.11.064
[27] G. Sciacca, M. Sinico, G. Cogo, D. Bigolaro, A. Pepato, J. Esposito, Experimental and numerical characterization of pure copper heat sinks produced by laser powder bed fusion, Mater. Des. 214 (2022) 110415. https://doi.org/https://doi.org/10.1016/j.matdes.2022.110415