Experimental analysis of FDM structures in shape memory polylactic acid

Experimental analysis of FDM structures in shape memory polylactic acid

Maria Pia Desole, Annamaria Gisario, Franco Maria Di Russo, Massimiliano Barletta

download PDF

Abstract. The behavior of solid cellular structures in polylactic acid (PLA) manufactured by Fused Deposition Modeling (FDM) is herein investigated. In particular, the manuscript investigates the capability of permanently deformed PLA structures to restore their starting shapes, once a thermal stimulus is applied on them. In this study, a structure called Rototetrachiral was produced, which originates from Rotochiral and Tetrachiral. The latter was tested to verify its mechanical response and its ability to absorb energy when subjected to a compression stress, repeated over several cycles. The experimental results showed a close connection between the structure’s ability to absorb energy and its extent of damage, which gradually increases with the number of cycles. Microscopic analysis shows that the central cells are the most deformed. However, the applied thermal stimulus allows to recover the deformation, ensuring good performance of the structure for a certain number of cycles.

Keywords
Additive Manufacturing, Energy Absorption, Shape Recovery

Published online 9/5/2023, 7 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Maria Pia Desole, Annamaria Gisario, Franco Maria Di Russo, Massimiliano Barletta, Experimental analysis of FDM structures in shape memory polylactic acid, Materials Research Proceedings, Vol. 35, pp 191-197, 2023

DOI: https://doi.org/10.21741/9781644902714-23

The article was published as article 23 of the book Italian Manufacturing Association Conference

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] A. Melocchi et al., «Shape memory materials and 4D printing in pharmaceutics», Adv. Drug Deliv. Rev., vol. 173, pp. 216–237, giu. 2021. https://doi.org/10.1016/j.addr.2021.03.013
[2] Xiaonan Huang, M. Ford, Z. J. Patterson, M. Zarepoor, C. Pan, e C. Majidi, «Shape memory materials for electrically-powered soft machines», J. Mater. Chem. B, vol. 8, fasc. 21, pp. 4539–4551, giu. 2020. https://doi.org/10.1039/D0TB00392A
[3] N. Sabahi, W. Chen, C.-H. Wang, J. J. Kruzic, e X. Li, «A Review on Additive Manufacturing of Shape-Memory Materials for Biomedical Applications», JOM, vol. 72, fasc. 3, pp. 1229–1253, mar. 2020. https://doi.org/10.1007/s11837-020-04013-x
[4] R. Sarvari et al., «Shape-memory materials and their clinical applications», Int. J. Polym. Mater. Polym. Biomater., vol. 71, fasc. 5, pp. 315–335, mar. 2022. https://doi.org/10.1080/00914037.2020.1833010
[5] I. Abavisani, O. Rezaifar, e A. Kheyroddin, «Multifunctional properties of shape memory materials in civil engineering applications: A state-of-the-art review», JOBE, vol. 44, p. 102657, dic. 2021. https://doi.org/10.1016/j.jobe.2021.102657
[6] M. C. Biswas, S. Chakraborty, A. Bhattacharjee, e Z. Mohammed, «4D Printing of Shape Memory Materials for Textiles: Mechanism, Mathematical Modeling, and Challenges», Adv. Funct. Mater., vol. 31, fasc. 19, p. 2100257, 2021. https://doi.org/10.1002/adfm.202100257
[7] M. O. Gök, M. Z. Bilir, e B. H. Gürcüm, «Shape-Memory Applications in Textile Design», Procedia Soc., vol. 195, pp. 2160–2169, lug. 2015. https://doi.org/10.1016/j.sbspro.2015.06.283
[8] M. Mehrpouya, A. Azizi, S. Janbaz, e A. Gisario, «Investigation on the Functionality of Thermoresponsive Origami Structures», Adv. Funct. Mater., vol. 22, fasc. 8, p. 2000296, 2020. https://doi.org/10.1002/adem.202000296
[9] H. E. Karaca, E. Acar, H. Tobe, e S. M. Saghaian, «NiTiHf-based shape memory alloys», Mater. Sci. Technol., vol. 30, fasc. 13, pp. 1530–1544, nov. 2014. https://doi.org/10.1179/1743284714Y.0000000598
[10] I. Akbar, M. El Hadrouz, M. El Mansori, e D. Lagoudas, «Toward enabling manufacturing paradigm of 4D printing of shape memory materials: Open literature review», Eur. Polym. J., vol. 168, p. 111106, apr. 2022. https://doi.org/10.1016/j.eurpolymj.2022.111106
[11] A. Subash e B. Kandasubramanian, «4D printing of shape memory polymers», Eur. Polym. J., vol. 134, p. 109771, lug. 2020. https://doi.org/10.1016/j.eurpolymj.2020.109771
[12] S. Joshi et al., «4D printing of materials for the future: Opportunities and challenges», Applied Materials Today, vol. 18, p. 100490, mar. 2020. https://doi.org/10.1016/j.apmt.2019.100490
[13] E. Pei e G. H. Loh, «Technological considerations for 4D printing: an overview», Prog Addit Manuf, vol. 3, fasc. 1, pp. 95–107, giu. 2018. https://doi.org/10.1007/s40964-018-0047-1
[14] A. Alderson et al., «Elastic constants of 3-, 4- and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading», Compos Sci Technol, vol. 70, fasc. 7, Art. fasc. 7, lug. 2010. https://doi.org/10.1016/j.compscitech.2009.07.009
[15] A. Sorrentino, D. Castagnetti, L. Mizzi, e A. Spaggiari, «Bio-inspired auxetic mechanical metamaterials evolved from rotating squares unit», Mech. Mater., vol. 173, p. 104421, ott. 2022. https://doi.org/10.1016/j.mechmat.2022.104421
[16] A. Papadopoulou, J. Laucks, e S. Tibbits, «Auxetic materials in design and architecture», Nat Rev Mater, vol. 2, fasc. 12, Art. fasc. 12, dic. 2017. https://doi.org/10.1038/natrevmats.2017.78
[17] M. Mehrpouya, T. Edelijn, M. Ibrahim, A. Mohebshahedin, A. Gisario, e M. Barletta, «Functional Behavior and Energy Absorption Characteristics of Additively Manufactured Smart Sandwich Structures», Adv. Eng. Mater., vol. 24, fasc. 9, Art. fasc. 9, 2022. https://doi.org/10.1002/adem.202200677
[18] T. Li, J. Sun, J. Leng, e Y. Liu, «Quasi-static compressive behavior and energy absorption of novel cellular structures with varying cross-section dimension», Compos. Struct., vol. 306, p. 116582, feb. 2023. https://doi.org/10.1016/j.compstruct.2022.116582
[19] A. P. Valerga, M. Batista, J. Salguero, e F. Girot, «Influence of PLA Filament Conditions on Characteristics of FDM Parts», Mater., vol. 11, fasc. 8, Art. fasc. 8, ago. 2018. https://doi.org/10.3390/ma11081322
[20] M. Barletta, A. Gisario, e M. Mehrpouya, «4D printing of shape memory polylactic acid (PLA) components: Investigating the role of the operational parameters in fused deposition modelling (FDM)», JMP, vol. 61, pp. 473–480, gen. 2021. https://doi.org/10.1016/j.jmapro.2020.11.036
[21] A. Forés-Garriga, G. Gómez-Gras, e M. A. Pérez, «Mechanical performance of additively manufactured lightweight cellular solids: Influence of cell pattern and relative density on the printing time and compression behavior», Mater. Des., vol. 215, p. 110474, mar. 2022. https://doi.org/10.1016/j.matdes.2022.110474
[22] W. Zhang et al., «Characterization of residual stress and deformation in additively manufactured ABS polymer and composite specimens», Compos Sci Technol, vol. 150, pp. 102–110, set. 2017. https://doi.org/10.1016/j.compscitech.2017.07.017
[23] L. J. Gibson, «Cellular Solids», MRS Bulletin, vol. 28, fasc. 4, Art. fasc. 4, apr. 2003. https://doi.org/10.1557/mrs2003.79
[24] A. Yousefi, S. Jolaiy, M. Lalegani Dezaki, A. Zolfagharian, A. Serjouei, e M. Bodaghi, «3D-Printed Soft and Hard Meta-Structures with Supreme Energy Absorption and Dissipation Capacities in Cyclic Loading Conditions», Adv. Eng. Mater., p. 2201189, nov. 2022. https://doi.org/10.1002/adem.202201189