On the role of intermetallic and interlayer in the dissimilar material welding of Ti6Al4V and SS 316L by friction stir welding
Harikrishna Rana, Gianluca Buffa, Livan Fratini
download PDFAbstract. Joining titanium with stainless steel can lighten the structure of numerous industrial applications. However, a vast disparity of thermal, physical, and chemical properties between these alloys leads to defects in conventional arc welding techniques, viz., brittle intermetallic compounds, pores, cracks, etc. Friction stir welding (FSW) is a renowned solid-state joining technology for creating dissimilar material joints producing visco-plastic material flow at the interface. The present investigation compares the intermetallic layer thickness and properties as a function of the thickness of the Cu interlayer sandwiched in lap joints. Macrostructural and microstructural characterizations were carried out to understand the localized microstructural evolution comprising intermetallic, grain refinement, defects, etc. Mechanical properties were also evaluated for prepared lap joints.
Keywords
Friction Stir Welding, Titanium Alloy, Stainless Steel
Published online 9/5/2023, 8 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: Harikrishna Rana, Gianluca Buffa, Livan Fratini, On the role of intermetallic and interlayer in the dissimilar material welding of Ti6Al4V and SS 316L by friction stir welding, Materials Research Proceedings, Vol. 35, pp 78-85, 2023
DOI: https://doi.org/10.21741/9781644902714-10
The article was published as article 10 of the book Italian Manufacturing Association Conference
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] H. Gugel, A. Schuermann, W. Theisen: Laser welding of NiTi wires. Materials Science and Engineering: A 481, 668-671 (2008). https://doi.org/10.1016/j.msea.2006.11.179
[2] G. Kale, R. Patil, P. Gawade: Interdiffusion studies in titanium-304 stainless steel system. Journal of nuclear materials 257(1), 44-50 (1998). https://doi.org/10.1016/S0022-3115(98)00179-2
[3] C.Y. Ho, R.E. Taylor, Thermal expansion of solids, ASM international1998.
[4] S. Chen, M. Zhang, J. Huang, C. Cui, H. Zhang, X. Zhao: Microstructures and mechanical property of laser butt welding of titanium alloy to stainless steel. Mater. Des 53, 504-511 (2014). https://doi.org/10.1016/j.matdes.2013.07.044
[5] B. Shanmugarajan, G. Padmanabham: Fusion welding studies using laser on Ti-SS dissimilar combination. Optics and Lasers in Engineering 50(11), 1621-1627 (2012). https://doi.org/10.1016/j.optlaseng.2012.05.008
[6] X. Yue, P. He, J. Feng, J. Zhang, F. Zhu: Microstructure and interfacial reactions of vacuum brazing titanium alloy to stainless steel using an AgCuTi filler metal. Mater. Charact. 59(12), 1721-1727 (2008). https://doi.org/10.1016/j.matchar.2008.03.014
[7] Z. Cheng, J. Huang, Z. Ye, H. Liu, J. Yang, S. Chen, X. Zhao: Interfacial microstructure evolution and mechanical properties of TC4 alloy/304 stainless steel joints with different joining modes. Journal of Manufacturing Processes 36, 115-125 (2018). https://doi.org/10.1016/j.jmapro.2018.09.027
[8] R. Shiue, S. Wu, J. Shiue: Infrared brazing of Ti-6Al-4V and 17-4 PH stainless steel with (Ni)/Cr barrier layer (s). Materials Science and Engineering: A 488(1-2), 186-194 (2008). https://doi.org/10.1016/j.msea.2007.10.075
[9] S. Kundu, B. Mishra, D. Olson, S. Chatterjee: Interfacial reactions and strength properties of diffusion bonded joints of Ti64 alloy and 17-4PH stainless steel using nickel alloy interlayer. Mater. Des 51, 714-722 (2013). https://doi.org/10.1016/j.matdes.2013.04.088
[10] S. Kundu, S. Chatterjee: Characterization of diffusion bonded joint between titanium and 304 stainless steel using a Ni interlayer. Mater. Charact. 59(5), 631-637 (2008). https://doi.org/10.1016/j.matchar.2007.05.015
[11] S. Kundu, M. Ghosh, A. Laik, K. Bhanumurthy, G. Kale, S. Chatterjee: Diffusion bonding of commercially pure titanium to 304 stainless steel using copper interlayer. Materials Science and Engineering: A 407(1-2), 154-160 (2005). https://doi.org/10.1016/j.msea.2005.07.010
[12] A. Elrefaey, W. Tillmann: Solid state diffusion bonding of titanium to steel using a copper base alloy as interlayer. J. Mater. Process. Technol. 209(5), 2746-2752 (2009). https://doi.org/10.1016/j.jmatprotec.2008.06.014
[13] P. He, X. Yue, J. Zhang: Hot pressing diffusion bonding of a titanium alloy to a stainless steel with an aluminum alloy interlayer. Materials Science and Engineering: A 486(1-2), 171-176 (2008). https://doi.org/10.1016/j.msea.2007.08.076
[14] E. Atasoy, N. Kahraman: Diffusion bonding of commercially pure titanium to low carbon steel using a silver interlayer. Mater. Charact. 59(10), 1481-1490 (2008). https://doi.org/10.1016/j.matchar.2008.01.015
[15] C. Liu, C. Ou, R. Shiue: The microstructural observation and wettability study of brazing Ti-6Al-4V and 304 stainless steel using three braze alloys. Journal of materials science 37(11), 2225-2235 (2002). https://doi.org/10.1023/A:1015356930476
[16] H. Dong, Z. Yang, Z. Wang, D. Deng, C. Dong: CuTiNiZrV amorphous alloy foils for vacuum brazing of TiAl alloy to 40Cr steel. J. mater. sci. technol. 31(2), 217-222 (2015). https://doi.org/10.1016/j.jmst.2014.04.003
[17] T. Chung, K. Jungsoo, B. Jeongseok, R. Byoungho, N. Daegeun: Microstructures of brazing zone between titanium alloy and stainless steel using various filler metals. Transactions of Nonferrous Metals Society of China 22, s639-s644 (2012). https://doi.org/10.1016/S1003-6326(12)61778-6
[18] P. Patel, H. Rana, V. Badheka, V. Patel, W. Li: Effect of active heating and cooling on microstructure and mechanical properties of friction stir-welded dissimilar aluminium alloy and titanium butt joints. Weld. World. 64(2), 365-378 (2020). https://doi.org/10.1007/s40194-019-00838-6
[19] Y. Su, W. Li, F. Gao, A. Vairis: Effect of FSW process on anisotropic of titanium alloy T-joint. Mater. Manuf. Process 37(1), 25-33 (2022). https://doi.org/10.1080/10426914.2021.1942911
[20] G. Buffa, M. De Lisi, E. Sciortino, L. Fratini: Dissimilar titanium/aluminum friction stir welding lap joints by experiments and numerical simulation. Adv. Manuf. 4(4), 287-295 (2016). https://doi.org/10.1007/s40436-016-0157-2
[21] M.P. Mubiayi, E.T. Akinlabi, Friction stir welding of dissimilar materials: an overview, Proceedings of World Academy of Science, Engineering and Technology, World Academy of Science, Engineering and Technology (WASET), 2013, pp. 65-69.
[22] P. Goel, N.Z. Khan, Z.A. Khan, A. Ahmari, N. Gangil, M.H. Abidi, A.N. Siddiquee: Investigation on material mixing during FSW of AA7475 to AISI304. Mater. Manuf. Process 34(2), 192-200 (2019). https://doi.org/10.1080/10426914.2018.1544717
[23] J. Verma, R.V. Taiwade, C. Reddy, R.K. Khatirkar: Effect of friction stir welding process parameters on Mg-AZ31B/Al-AA6061 joints. Mater. Manuf. Process 33(3), 308-314 (2018). https://doi.org/10.1080/10426914.2017.1291957
[24] M. Fazel-Najafabadi, S. Kashani-Bozorg, A. Zarei-Hanzaki: Joining of CP-Ti to 304 stainless steel using friction stir welding technique. Mater. Des 31(10), 4800-4807 (2010). https://doi.org/10.1016/j.matdes.2010.05.003
[25] G. Buffa, L. Fratini, F. Micari, L. Settineri: On the choice of tool material in friction stir welding of titanium alloys. Proceedings of NAMRI/SME 40, (2012).
[26] Y. Chen, C. Liu, G. Liu: Study on the joining of titanium and aluminum dissimilar alloys by friction stir welding. Open Mater. Sci. 5(1), 6-10 (2011). https://doi.org/10.2174/1874088X01105010256
[27] Z. Ma, X. Sun, S. Ji, Y. Wang, Y. Yue: Influences of ultrasonic on friction stir welding of Al/Ti dissimilar alloys under different welding conditions. Int. J. Adv. Manuf. Technol. 112(9), 2573-2582 (2021). https://doi.org/10.1007/s00170-020-06481-6