High-fidelity simulation of shock-wave/boundary layer interactions
A. Ceci
download PDFAbstract. We perform direct numerical simulations of impinging shock-boundary layer interaction on a flat plate, in which the shock is not orthogonal to the boundary layer flow. The analysis relies on an idealized configuration, where a spanwise flow component is used to introduce the effect of the sweep angle between a statistically two-dimensional boundary layer and the shock. A quantitative comparison is carried out between the swept case and the corresponding unswept one, and the effect of the domain spanwise width is examined. The analysis reveals that, while the time-averaged swept flow characteristics are basically unaffected by the choice of the domain width, the spectral dynamics of the flow dramatically changes with it. For very narrow domains, a pure two-dimensional, low-frequency component can be detected, which resembles the low-frequency oscillation of the unswept case. The present work is also devoted to compare the performance of Digital Filtering (DF) and Recycling-Rescaling methods (RR) in reaching an equilibrium state for the Direct Numerical Simulation (DNS) of a turbulent boundary layer. We performed two sets of DNS of supersonic and hypersonic boundary layers, based on previous numerical studies. It is found that, overall, the RR method is the most appropriate choice, to quickly reach a correct trend of the wall pressure fluctuations, whereas the DF method is more capable in obtain small deviations of the skin friction coefficient with respect to the benchmark.
Keywords
Compressible Boundary Layers, Shock Waves, Turbulence Simulation
Published online 9/1/2023, 9 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: A. Ceci, High-fidelity simulation of shock-wave/boundary layer interactions, Materials Research Proceedings, Vol. 33, pp 388-396, 2023
DOI: https://doi.org/10.21741/9781644902677-57
The article was published as article 57 of the book Aerospace Science and Engineering
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1]Adler, M. C. & Gaitonde, D. V. 2018 Dynamic linear response of a shock/turbulent-boundary-layer interaction using constrained perturbations. Journal of Fluid Mechanics 840. https://doi.org/10.1017/jfm.2018.70
[2]Adler, M. C. & Gaitonde, D. V. 2019 Flow similarity in strong swept-shock/ turbulent-boundary-layer interactions. AIAA Journal 57. https://doi.org/10.2514/1.J057534
[3]Babinsky, H. & Harvey, J. K. 2011 Shock wave-boundary-layer interactions. Cambridge University Press. https://doi.org/10.1017/CBO9780511842757
[4]Bernardini, M., Modesti, D., Salvadore, F. & Pirozzoli, S. 2021 Streams: A high-fidelity accelerated solver for direct numerical simulation of compressible turbulent flows. Computer Physics Communications 263, 107906. https://doi.org/10.1016/j.cpc.2021.107906
[5]Ceci , A., Palumbo , A., Larsson , J. & Pirozzoli , S. 2022 Numerical tripping of high-speed turbulent boundary layers. Theoretical and Computational Fluid Dynamics 36. https://doi.org/10.1007/s00162-022-00623-0
[6]Ceci , A., Palumbo , A., Larsson , J. & Pirozzoli , S. 2023 On low-frequency unsteadiness in swept shock wave-boundary layer interactions. Journal of Fluid Mechanics 956. https://doi.org/10.1017/jfm.2023.2
[7]Dhamankar, N. S., Blaisdell, G. A. & Lyrintzis, A. S. 2018 Overview of turbulent inflow boundary conditions for large-eddy simulations. AIAA Journal 56. https://doi.org/10.2514/1.J055528
[8]Di Renzo, M., Oberoi, N., Larsson, J. & Pirozzoli, S. 2021 Crossflow effects on shock wave/turbulent boundary layer interactions. Theoretical and Computational Fluid Dynamics. https://doi.org/10.1007/s00162-021-00574-y
[9]Dolling, D. S. 2001 Fifty years of shock-wave/boundary-layer interaction research: What next? AIAA Journal 39. https://doi.org/10.2514/3.14896
[10]Erengil, M. E. & Dolling, D. S. 1993 Effects of sweepback on unsteady separation in mach 5 compression ramp interactions. AIAA Journal 31. https://doi.org/10.2514/3.60176
[11]Erm, L. P. & Joubert, P. N. 1991 Low-reynolds-number turbulent boundary layers. Journal of Fluid Mechanics 230. https://doi.org/10.1017/S0022112091000691
[12]Fang, J., Yao, Y., Zheltovodov, A. A. & Lu, L. 2017 Investigation of Three-Dimensional ShockWave/Turbulent-Boundary-Layer Interaction Initiated by a Single Fin. AIAA Journal 55. https://doi.org/10.2514/1.J055283
[13]Gaitonde, D. V. 2015 Progress in shock wave/boundary layer interactions. Progress in Aerospace Sciences 72. https://doi.org/10.1016/j.paerosci.2014.09.002
[14]Gaitonde, D. V., Shang, J. S., Garrison, T. J., Zheltovodov, A. A. & Maksimov, A. I. 1999 Three-dimensional turbulent interactions caused by asymmetric crossing-shock configurations. AIAA journal 37. https://doi.org/10.2514/2.660
[15]Gross, A. & Fasel, H. F. 2016 Numerical investigation of shock boundary-layer interactions. In 54th AIAA Aerospace Sciences Meeting. https://doi.org/10.2514/6.2016-0347
[16]Klein, M., Sadiki, A. & Janicka, J. 2003 A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. Journal of Computational Physics 186. https://doi.org/10.1016/S0021-9991(03)00090-1
[17]Lund, T. S., Wu, X. & Squires, K. D. 1998 Generation of turbulent inflow data for spatially-developing boundary layer simulations. Journal of computational physics 140. https://doi.org/10.1006/jcph.1998.5882
[18]Padmanabhan, S., Maldonado, J. C., Threadgill, J. A. & Little, J. C. 2021 Experimental study of swept impinging oblique shock/boundary-layer interactions. AIAA journal 59. https://doi.org/10.2514/1.J058910
[19]Piponniau, S., Dussauge, J. P., Debiève, J. F. & Dupont, P. 2009 A simple model for low-frequency unsteadiness in shock-induced separation. Journal of Fluid Mechanics 629. https://doi.org/10.1017/S0022112009006417
[20]Pirozzoli, S. 2010 Generalized conservative approximations of split convective derivative operators. Journal of Computational Physics 229. https://doi.org/10.1016/j.jcp.2010.06.006
[21]Pirozzoli, S. & Bernardini, M. 2011a Direct numerical simulation database for impinging shock wave/turbulent boundary-layer interaction. AIAA Journal 49. https://doi.org/10.2514/1.J050901
[22]Pirozzoli, S. & Bernardini, M. 2011b Turbulence in supersonic boundary layers at moderate reynolds number. Journal of Fluid Mechanics 688. https://doi.org/10.1017/jfm.2011.368
[23]Pirozzoli, S., Bernardini, M. & Grasso, F. 2010 Direct numerical simulation of transonic shock/boundary layer interaction under conditions of incipient separation. Journal of Fluid Mechanics 657. https://doi.org/10.1017/S0022112010001710
[24]Pirozzoli, S. & Grasso, F. 2006 Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M=2.25. Physics of Fluids 18. https://doi.org/10.1063/1.2216989
[25]Priebe, S. & Pino Martìn, M. 2012 Low-frequency unsteadiness in shock wave-turbulent boundary layer interaction. Journal of Fluid Mechanics 699. https://doi.org/10.1017/jfm.2011.560
[26]Schlatter, P., Li, Q., Brethouwer, G., Johansson, A. V. & Henningson, D. S. 2010 Simulations of spatially evolving turbulent boundary layers up to Reθ= 4300. International Journal of Heat and Fluid Flow 31. https://doi.org/10.1016/j.ijheatfluidflow.2009.12.011
[27]Schmisseur, J. D. & Dolling, D. S. 1994 Fluctuating wall pressures near separation in highly swept turbulent interactions. AIAA Journal 32. https://doi.org/10.2514/3.12114
[28]Settles, G. S., Perkins, J. J. & Bogdonoff, S. M. 1980 Investigation of three-dimensional shock/boundary-layer interactions at swept compression corners. AIAA Journal 18. https://doi.org/10.2514/3.50819
[29]Settles, G. S. & Teng, H. Y. 1984 Cylindrical and conical flow regimes of three-dimensional shock/boundary-layer interactions. AIAA Journal 22. https://doi.org/10.2514/3.8367
[30]Sillero, J. A., Jiménez, J. & Moser, R. D. 2013 One-point statistics for turbulent wall-bounded flows at reynolds numbers up to δ+ 2000. Physics of Fluids 25, 105102. https://doi.org/10.1063/1.4823831
[31]Simens, M. P., Jim ́enez, J., Hoyas, S. & Mizuno, Y. 2009 A high-resolution code for turbulent boundary layers. Journal of Computational Physics 228. https://doi.org/10.1016/j.jcp.2009.02.031
[32]Threadgill, J. A. & Little, J. C. 2020 An inviscid analysis of swept oblique shock reflections. Journal of Fluid Mechanics 890. https://doi.org/10.1017/jfm.2020.117
[33]Vanstone, L. & Clemens, N. T. 2018 Pod analysis of unsteadiness mechanisms within a swept compression ramp shock-wave boundary-layer interaction at Mach 2. In AIAA Aerospace Sciences Meeting, 2018. https://doi.org/10.2514/6.2018-2073
[34]Vanstone, L., Musta, M. N., Seckin, S. & Clemens, N. T. 2018 Experimental study of the mean structure and quasi-conical scaling of a swept-compression-ramp interaction at Mach 2. Journal of Fluid Mechanics 841. https://doi.org/10.1017/jfm.2018.8
[35]Wenzel, C., Selent, B., Kloker, M. & Rist, U. 2018 DNS of compressible turbulent boundary layers and assessment of data/scaling-law quality. Journal of Fluid Mechanics 842, 428-468. https://doi.org/10.1017/jfm.2018.179
[36]Wray, A. A. 1990 Minimal storage time advancement schemes for spectral methods. Tech. Rep.NASA Ames Research Center, Moffett Field, CA.
[37]Xu, S. & Martin, M. P. 2004 Assessment of inflow boundary conditions for compressible turbulent boundary layers. Physics of Fluids 16. https://doi.org/10.1063/1.1758218
[38]Zhang, C., Duan, L., Choudhari, M.M. 2018 Direct numerical simulation database for supersonic and hypersonic turbulent boundary layers. AIAA J. 56(11), 4297-4311 https://doi.org/10.2514/1.J057296
[39]Zuo, F. Y., Memmolo, A., Huang, G. P. & Pirozzoli, S. 2019 Direct numerical simulation of conical shock wave-turbulent boundary layer interaction. Journal of Fluid Mechanics 877. https://doi.org/10.1017/jfm.2019.558