Development of a flat-sat software for deep-space autonomous GNC hardware-in-the-loop testing

Development of a flat-sat software for deep-space autonomous GNC hardware-in-the-loop testing

Davide Perico

download PDF

Abstract. This paper presents the development of software to integrate autonomous Guidance, Navigation, and Control algorithms and perform Hardware-In-the-Loop testing in the EXTREMA Simulation Hub facility to leverage the technology for self-driving deep-space CubeSats. Firstly, the design drivers are derived, and a multi-layered modular architecture for real-time execution is justified accordingly. Moreover, the combination of software and target computing hardware is identified by presenting the adoption of a board that satisfactorily represents the limited computational power typical of CubeSats and drawing the path towards reconfigurable computing.

Keywords
Autonomous Interplanetary CubeSats, Hardware-In-the-Loop, Flat-Sat On-Board Computer, Software Development Workflow

Published online 9/1/2023, 8 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Davide Perico, Development of a flat-sat software for deep-space autonomous GNC hardware-in-the-loop testing, Materials Research Proceedings, Vol. 33, pp 239-246, 2023

DOI: https://doi.org/10.21741/9781644902677-35

The article was published as article 35 of the book Aerospace Science and Engineering

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] A. Freeman and C. Norton. Exploring our Solar System with Cubesats and Nanosats. In: Proceedings of the 13th Reinventing Space Conference. Oxford, UK, 2018. https://doi.org/10.1007/978-3-319-32817-11
[2] E. Kulu. Nanosatellite Launch Forecasts – Track Record and Latest Prediction. In: Small Satellite Conference 2022. Logan, Utah, USA, 2022.
[3] L. J. Deutsch, S. A. Townes, P. E. Liebrecht, P. A. Vrotsos and D. M. Cornwell. Deep Space network: The Next 50 Years. In: 14th International Conference on Space Operations. Daejeon, Korea, 2016. https://doi.org/10.2514/6.2016-2373
[4] A. Morselli, G. Di Domenico, E. Andreis, A. C. Morelli, G. Merisio, V. Franzese, C. Giordano, F. Ferrari and F. Topputo. The EXTREMA Orbital Simulation Hub: a Facility for GNC Testing of Autonomous Interplanetary CubeSat. In: 4S Symposium Proceedings. Vilamoura, Portugal, 2022.
[5] P. Panicucci, E. Andreis, F. Franzese and F. Topputo. An overview of the EXTREMA deep-space optical navigation experiment. In: 3rd Space Imaging Workshop. Atlanta, Georgia, USA, 2022.
[6] A. Morselli, A. C. Morelli and F. Topputo. ETHILE: A Thruster-In-the-Loop Facility to Enable Autonomous Guidance and Control for Autonomous Interplanetary Cubesats. In: 73rd International Astronautical Congress (IAC 2022). Paris, France, 2022.
[7] G. Di Domenico and F. Topputo. STASIS: An Attitude Testbed for Hardware-in-the-Loop Simulations of Autonomous Guidance, Navigation, and Control Systems. In: 73rd International Astronautical Congress (IAC 2022). Paris, France, 2022.
[8] C. Giordano and F. Topputo. SPESI: A Real-Time Space Environment Simulator for the EXTREMA Project. In: 33rd AAS/AIAA Space Flight Mechanics Meeting. Austin, Texas, USA, 2023.
[9] N. D. Matsakis and F. S. Klock. The Rust Language. ACM SIGda Ada Letters, 34 (3) 103-104. 2014. https://doi.org/10.1145/2663171.2663188
[10] P. Hambarde, R. Varma and S. Jha. The Survey of Real Time Operating System: RTOS. In: 2014 International Conference on Electronic Systems, Signal Processing and Computing Technologies. Nagpur, India, 2014. doi: https://doi.org/10.1109/ICESC.2014.15
[11] M. Troesch, F. Mirza, K. Hughes, A. Rothstein-Dowden, A. Donner, R. Bocchino, M. Feather, B. Smith, L. Fesq, B. Barker and B. Campuzano. MEXEC: An Onboard Integrated Planning and Exécution Approach for Spacecraft Commanding. In: 30th International Conference on Automated Planning and Scheduling. Nancy, France, 2020.
[12] R. Amini, L. Fesq, R. Mackey, F. Mirza, R. Rasmussen, M. Troesch and K. Kolcio. FRESCO: A Framework for Spacecraft Systems Autonomy. In: 2021 IEEE Aerospace Conference (50100). Big Sky, Montana, USA, 2021. https://doi.org/10.1109/AERO50100.2021.9438470
[13] M. Cols Margenet, H. Schaub and S. Piggott. Flight Software Development, Migration, and Testing in Desktop and Embedded Environments. Journal of Aerospace Information Systems, 18 (4) 157-174, 2021. https://doi.org/10.2514/1.I010820
[14] E. Andreis, P. Panicucci, V. Franzese and F. Topputo. A Robust Image Processing Pipeline for Planets Line-Of-sign Extraction for Deep-Space Autonomous Cubesats Navigation. In: 44th AAS Guidance, Navigation and Control Conference. Breckenridge, Colorado, USA, 2022.
[15] A. D. George and C. M. Wilson. Onboard Processing With Hybrid and Reconfigurable Computing on Small Satellites. Proceedings of the IEEE 106(3) 458 – 470. 2018. doi: https://doi.org/10.1109/JPROC.2018.2802438
[16] Z. Wan, A. Lele, B. Yu, S. Liu, Y. Wang, V. J. Reddi and A. Raychowdhury. Robotic Computing on FPGAs: Current Progress, Research Challenges, and Opportunities. arXiv preprint. 2022. https://doi.org/10.48550/arXiv.2205.07149
[17] G. W. Donohoe and J. C. Lyke. Reconfigurable Computing for Space. In T. A. Thawar, editor, Aerospace Technologies Advancements, chapter 3. InTech, 2010. ISBN: 978-953-7619-96-1. https://doi.org/10.5772/117
[18] V. Marchese, N. R. Benigno, S. Simonetti, E. Fazzoletto, F. Miglioretti, V. Di Tana, S. Pirrotta, M. Amoroso, E. Dotto and V. Della Corte. LICIACube Mission: The Fastest Fly-By Ever Done by a CubeSat. In: Small Satellite Conference 21. Logan, USA, 2021.