Smart Anticorrosive Polymeric Coatings for Prolonging the Lifetime of Metallic Structures

$30.00

Smart Anticorrosive Polymeric Coatings for Prolonging the Lifetime of Metallic Structures

Reza Naderi, Najmeh Asadi

Organic coatings as a physical barrier are applied on metallic substrates to suppress the metal deterioration against corrosive media. When the coatings are scratched or damaged, no active corrosion protection is provided. In other words, when the barrier properties fail, protection performance decreases and corrosion reactions occur on the metallic substrate surface. To overcome the problem, corrosion inhibitors have been proposed to be included directly or indirectly. One of the most effective strategies to develop smart coatings is to incorporate inhibitor-container into the formulation. Layers by layers (LbLs), layered double hydroxides (LDHs) with anion exchange capability, halloysite nanotubes (HNTs), particles with cation exchange capability such as clay montmorillonite, zeolite, etc. are some of the reservoirs that will discuss in this chapter. The containers carry inhibitor and liberate it on-demand. So, the protection performance of the coatings is guaranteed for the longer times.

Keywords
Smart Coatings, Inhibitor, Organic Coating, Active Corrosion Protection, Nano Reservoir

Published online 8/10/2023, 29 pages

Citation: Reza Naderi, Najmeh Asadi, Smart Anticorrosive Polymeric Coatings for Prolonging the Lifetime of Metallic Structures, Materials Research Foundations, Vol. 149, pp 173-201, 2023

DOI: https://doi.org/10.21741/9781644902639-6

Part of the book on New Materials for a Circular Economy

References
[1] J. Akpoborie, O. S. I. Fayomi, O. Agboola, O. D. Samuel, B. U. Oreko, A. A. Ayoola, Electrochemical Corrosion Phenomenon and Prospect of Materials Selection in Curtailing the Challenges, in IOP Conference series: Materials Science and Engineering, 1107 (2021) 012072. https://doi.org/10.1088/1757-899X/1107/1/012072
[2] H. Marchebois, M. Keddam, C. Savall, J. Bernard, S. Touzain, Zinc-rich powder coatings characterisation in artificial sea water EIS analysis of the galvanic action, Electrochim. Acta 49 (2004) 1719-1729. https://doi.org/10.1016/j.electacta.2003.11.031
[3] S. Shen, Y. Zuo, X. Zhao, The effects of 8-hydroxyquinoline on corrosion performance of a Mg-rich coating on AZ91D magnesium alloy, Corros. Sci. 76 (2013) 275-283. https://doi.org/10.1016/j.corsci.2013.06.050
[4] U. M. Angst, A Critical Review of the Science and Engineering of Cathodic Protection of Steel in Soil and Concrete, corrosion 75 (2019) 1420-1433. https://doi.org/10.5006/3355
[5] Y. Zuo, P. Zhao, J. Zhao, The influences of sealing methods on corrosion behavior of anodized aluminum alloys in NaCl solutions, Surf. coatings Technol. 166 (2003) 237-242. https://doi.org/10.1016/S0257-8972(02)00779-X
[6] B. C. Blawert, W. Dietzel, E. Ghali, G. Song, Anodizing Treatments for MagnesiumAlloysandTheirEffecton Corrosion Resistance in Various Environments, Adv. Eng. Mater. 8 (2006) 511-533. https://doi.org/10.1002/adem.200500257
[7] A. K. Sharma, Anodizing titanium for space applications, Thin Solid Films 208 (1992) 48-54. https://doi.org/10.1016/0040-6090(92)90946-9
[8] A. K. Dubey, G. Singh, Corrosion Inhibition of Mild Steel in Sulphuric Acid Solution by Using Polyethylene Glycol Methyl Ether ( PEGME ), Port. Electrochim. Acta 25 (2007) 221-235. https://doi.org/10.4152/pea.200702221
[9] N. Asadi, M. Ramezanzadeh, G. Bahlakeh, B. Ramezanzadeh, Utilizing Lemon Balm extract as an effective green corrosion inhibitor for mild steel in 1M HCl solution: A detailed experimental, molecular dynamics, Monte Carlo and quantum mechanics study, J. Taiwan Inst. Chem. Eng. 95 (2019) 252-272. https://doi.org/10.1016/j.jtice.2018.07.011
[10] S. S. Abd, E. Rehim, H. H. Hassan, M. A. Amin, Corrosion inhibition study of pure Al and some of its alloys in 1 . 0 M HCl solution by impedance technique, Corros. Sci. 46 (2004) 5-25. https://doi.org/10.1016/S0010-938X(03)00133-1
[11] N. Parhizkar, T. Shahrabi, B. Ramezanzadeh, Synthesis and characterization of a unique isocyanate silane re duce d graphene oxide nanosheets; Screening the role of multifunctional nanosheets on the adhesion and corrosion protection performance, J. Taiwan Inst. Chem. Eng. 82 (2018) 281-299. https://doi.org/10.1016/j.jtice.2017.10.033
[12] A. Kalendová, Alkalizing and neutralizing effects of anticorrosive pigments containing Zn, Mg, Ca, and Sr cations, Prog. Org. Coatings 38 (2000) 199-206. https://doi.org/10.1016/S0300-9440(00)00103-X
[13] M. Behzadnasab, S. M. Mirabedini, K. Kabiri, S. Jamali, Corrosion performance of epoxy coatings containing silane treated ZrO 2 nanoparticles on mild steel in 3 . 5 % NaCl solution, Corros. Sci. 53 (2011) 89-98. https://doi.org/10.1016/j.corsci.2010.09.026
[14] S. Nabavian, R. Naderi, N. Asadi, Determination of Optimum Concentration of Benzimidazole Improving the Cathodic Disbonding Resistance of Epoxy Coating, coatings 8 (2018) 471. https://doi.org/10.3390/coatings8120471
[15] P. A. Sørensen, S. Kiil, K. Dam-Johansen, C. E. Weinell, Anticorrosive coatings: A review, J. Coatings Technol. Res. 6 (2009) 135-176. https://doi.org/10.1007/s11998-008-9144-2
[16] P. de Lima-Neto, A. P. de Araújo, W. S. Araújo, A. N. Correia, Study of the anticorrosive behaviour of epoxy binders containing non-toxic inorganic corrosion inhibitor pigments, Prog. Org. Coatings 62 (2008) 344-350. https://doi.org/10.1016/j.porgcoat.2008.01.012
[17] M. Zubielewicz, W. Gnot, Mechanisms of non-toxic anticorrosive pigments in organic waterborne coatings, Prog. Org. Coatings 49 (2004) 358-371. https://doi.org/10.1016/j.porgcoat.2003.11.001
[18] F. De, L. Fedrizzi, S. Rossi, P. L. Bonora, Organic coating capacitance measurement by EIS : ideal and actual trends, Electrochim. Acta 44 (1999) 4243-4249. https://doi.org/10.1016/S0013-4686(99)00139-5
[19] D. Greenfield, D. Scantlebury, The Protective Action of Organic Coatings on Steel: A review, J. Corros. Sci. Eng. 3 (2000) 1-27.
[20] G. Grundmeier, W. Schmidt, M. Stratmann, Corrosion protection by organic coatings: electrochemical mechanism and novel methods of investigation, Electrochim. Acta 45 (2000) 2515-2533. https://doi.org/10.1016/S0013-4686(00)00348-0
[21] P. H. Suegama, H. G. De Melo, A. A. C. Recco, A. P. Tschiptschin, I. V Aoki, Corrosion behavior of carbon steel protected with single and bi-layer of silane films filled with silica nanoparticles, Surf. Coat. Technol. 202 (2008) 2850-2858. https://doi.org/10.1016/j.surfcoat.2007.10.028
[22] F. Deflorian, S. Rossi, An EIS study of ion diffusion through organic coatings, Electrochim. Acta 51 (2006) 1736-1744. https://doi.org/10.1016/j.electacta.2005.02.145
[23] R. Naderi, M. M. Attar, The role of zinc aluminum phosphate anticorrosive pigment in Protective Performance and cathodic disbondment of epoxy coating, Corros. Sci. 52 (2010) 1291-1296. https://doi.org/10.1016/j.corsci.2009.12.019
[24] R. Naderi, M. M. Attar, Cathodic disbondment of epoxy coating with zinc aluminum polyphosphate as a modified zinc phosphate anticorrosion pigment, Prog. Org. Coatings 69 (2010) 392-395. https://doi.org/10.1016/j.porgcoat.2010.08.001
[25] R. Naderi, M. M. Attar, Electrochemical study of protective behavior of organic coating pigmented with zinc aluminum polyphosphate as a modified zinc phosphate at different pigment volume concentrations, Prog. Org. Coatings 66 (2009) 314-320. https://doi.org/10.1016/j.porgcoat.2009.08.009
[26] R. Naderi, M. M. Attar, Electrochimica Acta Electrochemical assessing corrosion inhibiting effects of zinc aluminum polyphosphate ( ZAPP ) as a modified zinc phosphate pigment, Electrochim. Acta 53 (2008) 5692-5696. https://doi.org/10.1016/j.electacta.2008.03.029
[27] R. Naderi, M. M. Attar, Application of the electrochemical noise method to evaluate the effectiveness of modification of zinc phosphate anticorrosion pigment, Corros. Sci. 51 (2009) 1671-1674. https://doi.org/10.1016/j.corsci.2009.04.015
[28] R. Naderi, M. Mahdavian, M. M. Attar, Electrochemical behavior of organic and inorganic complexes of Zn ( II ) as corrosion inhibitors for mild steel : Solution phase study, Electrochim. Acta 54 (2009) 6892-6895. https://doi.org/10.1016/j.electacta.2009.06.073
[29] R. Naderi, M. M. Attar, EIS and ENM as tools to evaluate inhibitive performance of second generation of phosphate-based anticorrosion pigments, J. Appl. Electrochem. 39 (2009) 2353-2358. https://doi.org/10.1007/s10800-009-9921-3
[30] R. Naderi, M. Mahdavian, A. Darvish, Electrochemical examining behavior of epoxy coating incorporating zinc-free phosphate-based anticorrosion pigment, Prog. Org. Coatings 76 (2013) 302-306. https://doi.org/10.1016/j.porgcoat.2012.09.026
[31] R. Naderi, M. M. Attar, The inhibitive performance of polyphosphate-based anticorrosion pigments using electrochemical techniques, Dye. Pigment. 80 (2009) 349-354. https://doi.org/10.1016/j.dyepig.2008.08.002
[32] C. Deyá, G. Blustein, B. Amo, R. Romagnoli, Evaluation of eco-friendly anticorrosive pigments for paints in service conditions, Prog. Org. Coatings 69 (2010) 1-6. https://doi.org/10.1016/j.porgcoat.2010.03.011
[33] M. Mahdavian, R. Naderi, Corrosion inhibition of mild steel in sodium chloride solution by some zinc complexes, Corros. Sci. 53 (2011) 1194-1200. https://doi.org/10.1016/j.corsci.2010.12.013
[34] E. Salehi, R. Naderi, B. Ramezanzadeh, Improvement in the protective performance of epoxy ester coating through inclusion of an effective hybrid green corrosion inhibitive pigment, J. Taiwan Inst. Chem. Eng. 81 (2017) 391-405. https://doi.org/10.1016/j.jtice.2017.09.049
[35] N. Asadi, M. Ramezanzadeh, G. Bahlakeh, B. Ramezanzadeh, Theoretical MD / DFT computer explorations and surface-electrochemical investigations of the zinc / iron metal cations interactions with highly active molecules from Lemon balm extract toward the steel corrosion retardation in saline solution, J. Mol. Liq. 310 (2020) 113220. https://doi.org/10.1016/j.molliq.2020.113220
[36] M. Motamedi, B. Ramezanzadeh, M. Mahdavian, Corrosion inhibition properties of a green hybrid pigment based on Pr-Urtica Dioica plant extract, J. Ind. Eng. Chem., 66 (2018) 116-125. https://doi.org/10.1016/j.jiec.2018.05.021
[37] M. Ramezanzadeh, Z. Sanaei, G. Bahlakeh, B. Ramezanzadeh, Highly effective inhibition of mild steel corrosion in 3.5 % NaCl solution by green Nettle leaves extract and synergistic effect of eco-friendly cerium nitrate additive : Experimental , MD simulation and QM investigations, J. Mol. Liq. 256 (2018) 67-83. https://doi.org/10.1016/j.molliq.2018.02.021
[38] G. Bahlakeh, M. Ramezanzadeh, B. Ramezanzadeh, Experimental and theoretical studies of the synergistic inhibition effects between the plant leaves extract (PLE) and zinc salt (ZS) in corrosion control of carbon steel in chloride solution, J. Mol. Liq. 248 (2017) 854-870. https://doi.org/10.1016/j.molliq.2017.10.120
[39] E. Alibakhshi, M. Ramezanzadeh, S. A. Haddadi, G. Bahlakeh, B. Ramezanzadeh, Persian Liquorice extract as a highly efficient sustainable corrosion inhibitor for mild steel in sodium chloride solution, J. Clean. Prod. 210 (2019) 660-672. https://doi.org/10.1016/j.jclepro.2018.11.053
[40] M. Razizadeh, M. Mahdavian, B. Ramezanzadeh, E. Alibakhshi, S. Jamali, Synthesis of hybrid organic – inorganic inhibitive pigment based on basil extract and zinc cation for application in protective construction coatings, Constr. Build. Mater. 287 (2021) 123034. https://doi.org/10.1016/j.conbuildmat.2021.123034
[41] E. Salehi, R. Naderi, B. Ramezanzadeh, Synthesis and characterization of an effective organic/inorganic hybrid green corrosion inhibitive complex based on zinc acetate / Urtica Dioica, Appl. Surf. Sci. 396 (2017) 1499-1514. https://doi.org/10.1016/j.apsusc.2016.11.198
[42] S. Abrishami, R. Naderi, B. Ramezanzadeh, Fabrication and characterization of zinc acetylacetonate/Urtica Dioica leaves extract complex as an effective organic/inorganic hybrid corrosion inhibitive pigment for mild steel protection in chloride solution, Appl. Surf. Sci. 457 (2018) 487-496. https://doi.org/10.1016/j.apsusc.2018.06.190
[43] Z. Sanaei, G. Bahlakeh, B. Ramezanzadeh, Active corrosion protection of mild steel by an epoxy ester coating reinforced with hybrid organic/inorganic green inhibitive pigment, J. Alloys Compd. 728 (2017) 1289-1304. https://doi.org/10.1016/j.jallcom.2017.09.095
[44] D. Snihirova, S. V Lamaka, M. F. Montemor, ‘SMART’ protective ability of water based epoxy coatings loaded with CaCO3 microbeads impregnated with corrosion inhibitors applied on AA2024 substrates, Electrochim. Acta, 83 (2012) 439-447. https://doi.org/10.1016/j.electacta.2012.07.102
[45] M. Izadi, T. Shahrabi, B. Ramezanzadeh, Synthesis and characterization of an advanced layer-by-layer assembled Fe3O4/polyaniline nanoreservoir filled with Nettle extract as a green corrosion protective system, J. Ind. Eng. Chem. 57 (2018) 263-274. https://doi.org/10.1016/j.jiec.2017.08.032
[46] J. Sinko, Challenges of chromate inhibitor pigments replacement in organic coatings, Prog. Org. Coatings 42 (2001) 267-282. https://doi.org/10.1016/S0300-9440(01)00202-8
[47] M. L. Zheludkevich, R. Serra, M. F. Montemor, M. G. S. Ferreira, Oxide nanoparticle reservoirs for storage and prolonged release of the corrosion inhibitors, Electrochem. commun. 7 (2005) 836-840. https://doi.org/10.1016/j.elecom.2005.04.039
[48] S. K. Ghosh, Functional Coatings and Microencapsulation: A General Perspective, in: S. K. Ghosh, Functional Coatings: By Polymer Microencapsulation, Wiley-VCH, Belgium, 2006, pp. 1-28. https://doi.org/10.1002/3527608478.ch1
[49] A. J. Jadhav, S. E. Karekar, D. V. Pinjari, Y. G. Datar, B. A. Bhanvase, S. h.Snoawane, A. B. Pandit, Development of Smart Nanocontainers With A Zinc Phosphate Core and A pH-Responsive Shell for Controlled Release of Immidazole, Hybrid Mater. 2 (2015) 1-9. https://doi.org/10.1515/hyma-2015-0001
[50] B. D. G. Shchukin, M. Zheludkevich, K. Yasakau, S. Lamaka, M. G. S. Ferreira, H. Möhwald, Layer-by-Layer Assembled Nanocontainers for Self-Healing Corrosion Protection, Adv. Mater. 18 (2006) 1672-1678. https://doi.org/10.1002/adma.200502053
[51] B. A. Bhanvase, M. A. Patel, S. H. Sonawane, Kinetic properties of layer-by-layer assembled cerium zinc molybdate nanocontainers during corrosion inhibition, Corros. Sci. 88 (2014) 170-177. https://doi.org/10.1016/j.corsci.2014.07.022
[52] S. H. Sonawane, B. A. Bhanvase, A. A. jamli, S. K. Dubey, S. S. Kale, D. V. Pinjari, R. D. Kulkarni, P. R. gogate, A. B. Pandit, Improved active anticorrosion coatings using layer-by-layer assembled ZnO nanocontainers with benzotriazole, Chem. Eng. J. 189-190 (2012) 464-472. https://doi.org/10.1016/j.cej.2012.02.076
[53] M. L. Zheludkevich, S. k. Poznyak, l. m. Rodrigues, D. Raps, T. hack, L. F. Dick,T. Nunes, M. G. S. Ferreira, Active protection coatings with layered double hydroxide nanocontainers of corrosion inhibitor, Corros. Sci. 52 (2010) 602-611. https://doi.org/10.1016/j.corsci.2009.10.020
[54] J. Tedim, M. L. Zheludkevich, A. N. Salak, A. Lisenkov, M. G. S. Ferreira, Nanostructured LDH-container layer with active protection functionality, J. Mater. Chem. 21 (2011) 15464-15470. https://doi.org/10.1039/c1jm12463c
[55] J. Tedim, M. L. Zheludkevich, A. C. Bastos, A. N. Salak, A. D. Lisenkov, M. G. S. Ferreira, Influence of preparation conditions of Layered Double Hydroxide conversion films on corrosion protection, Electrochim. Acta 117 (2014) 164-171. https://doi.org/10.1016/j.electacta.2013.11.111
[56] E. Alibakhshi, E. Ghasemi, M. Mahdavian, B. Ramezanzadeh, S. Farashi, Active corrosion protection of Mg-Al-PO43- LDH nanoparticle in silane primer coated with epoxy on mild steel, J. Taiwan Inst. Chem. Eng. 75 (2017) 248-262. https://doi.org/10.1016/j.jtice.2017.03.010
[57] M. A. Iqbal, F. Michele, Effect of Synthesis Conditions on the Controlled Growth of MgAl – LDH Corrosion Resistance Film: Structure and Corrosion Resistance Properties, coatings 9 (2019) 30. https://doi.org/10.3390/coatings9010030
[58] S. K. Poznyak, J. Tedim, L. M. Rodrigues, A. n. Salak, M. l. Zheludkevich, L. F. P. Dick, M. G. S. Ferreira, Novel Inorganic Host Layered Double Hydroxides Intercalated with Guest Organic Inhibitors for Anticorrosion Applications, ACS Appl. Mater. Interfaces 1 (2009) 2353-2362. https://doi.org/10.1021/am900495r
[59] V. Shkirskiy, P. Keil, F. Leroux, P. Vialat, G. Lefe, K. Ogle, Factors Affecting MoO42- Inhibitor Release from Zn2Al Based Layered Double Hydroxide and Their Implication in Protecting Hot Dip Galvanized Steel by Means of Organic Coatings, ACS Appl. Mater. Interfaces 7 (2015) 25180-25192. https://doi.org/10.1021/acsami.5b06702
[60] E. Alibakhshi, E. Ghasemi, M. Mahdavian, B. Ramezanzadeh, A comparative study on corrosion inhibitive effect of nitrate and phosphate intercalated Zn-Al- layered double hydroxides (LDHs) nanocontainers incorporated into a hybrid silane layer and their effect on cathodic delamination of epoxy topcoat, Eval. Program Plann. 115 (2016) 159-174. https://doi.org/10.1016/j.corsci.2016.12.001
[61] D. Li, F. Wang, X. Yu, J. Wang, Q. Liu, P. Yang, Y. He, Y. Wang, M. Zhang, Anticorrosion organic coating with layered double hydroxide loaded with corrosion inhibitor of tungstate, Prog. Org. Coatings 71(2011) 302-309. https://doi.org/10.1016/j.porgcoat.2011.03.023
[62] J. K. Lin, J. Y. Uan, C. P. Wu, H. H. Huang, Direct growth of oriented Mg – Fe layered double hydroxide (LDH) on pure Mg substrates and in vitro corrosion and cell adhesion testing of LDH-coated Mg samples, J. Mater. Chem. 21 (2011) 5011-5020. https://doi.org/10.1039/c0jm03764h
[63] J. Zhang, Y. Zhang, Y. Chen, L. Du, B. Zhang, H. Zhang, J. Liu, K. Wang, Preparation and Characterization of Novel Polyethersulfone Hybrid Ultrafiltration Membranes Bending with Modified Halloysite Nanotubes Loaded with Silver Nanoparticles, Ind. Eng. Chem. Res. 51 (2012) 3081-3090. https://doi.org/10.1021/ie202473u
[64] R. Subasri, K. R. C. Soma Raju, D. S. Reddy, A. Jyothirmayi, Vijaykumar S. Ijeri, Om Prakash, Stephen P. Gaydos, Environmentally friendly Zn – Al layered double hydroxide ( LDH ) – based sol – gel corrosion protection coatings on AA 2024-T3, J. Coatings Technol. Res.16 (2019) 1447-4163. https://doi.org/10.1007/s11998-019-00229-y
[65] N. Olya, E. Ghasemi, B. Ramezanzadeh, M. Mahdavian, Synthesis, characterization and protective functioning of surface decorated Zn-Al layered double hydroxide with SiO2 nano-particles, Surf. Coat. Technol. 387 (2020) 125512. https://doi.org/10.1016/j.surfcoat.2020.125512
[66] M. J. Anjum, J. Zhao, V. Z. Asl, M. U. Malik, G. Yasin, W. Q. Khan, Green corrosion inhibitors intercalated Mg:Al layered double hydroxide coatings to protect Mg alloy, Rare Met. 40(2021) 2254-2265. https://doi.org/10.1007/s12598-020-01538-7
[67] F. Zhang, C. Zhang, L. Song, R. Zeng, Z. Liu, H. Cui, Corrosion of in-situ grown MgAl-LDH coating on aluminum alloy, Trans. Nonferrous Met. Soc. China 25 (2015) 3498-3504. https://doi.org/10.1016/S1003-6326(15)63987-5
[68] J. Tedim, A. C. Bastos, S. Kallip, M. L. Zheludkevich, M. G. S. Ferreira, Corrosion protection of AA2024-T3 by LDH conversion films. Analysis of SVET results, Electrochim. Acta 210 (2016) 215-224. https://doi.org/10.1016/j.electacta.2016.05.134
[69] Y. Zhang, J. Liu, Y. Li, M. Yu, Fabrication of inhibitor anion-intercalated layered double hydroxide host films on aluminum alloy 2024 and their anticorrosion properties, J. Coatings Technol. Res. 12 (2015) 293-302. https://doi.org/10.1007/s11998-014-9644-1
[70] T. Wen, R. Yan, N. Wang, Y. Li, T. Chen, H. Ma, PPA-containing layered double hydroxide ( LDH ) fi lms for corrosion protection of a magnesium alloy, Surf. Coat. Technol. 383 (2020) 125255. https://doi.org/10.1016/j.surfcoat.2019.125255
[71] R. G. Buchheit, S. B. Mamidipally, P. Schmutz, H. Guan, Active Corrosion Protection in Ce-Modified Hydrotalcite Conversion Coatings, Corrosion 58 (2002) 3-14. https://doi.org/10.5006/1.3277303
[72] J. Uan, B. Yu, X. Pan, Morphological and Microstructural Characterization of the Aragonitic CaCO3 / Mg , Al-Hydrotalcite Coating on Mg-9 Wt Pct Al-1 Wt Pct Zn Alloy to Protect against Corrosion, Metall. Mater. Trans. A 39 (2008) 3233-3245. https://doi.org/10.1007/s11661-008-9669-0
[73] M. Saremi, M. Yeganeh, Application of mesoporous silica nanocontainers as smart host of corrosion inhibitor in polypyrrole coatings, Corros. Sci. 86 (2014) 159-170. https://doi.org/10.1016/j.corsci.2014.05.007
[74] M. Yeganeh, M. Saremi, H. Rezaeyan, Corrosion inhibition of steel using mesoporous silica nanocontainers incorporated in the polypyrrole, Prog. Org. Coatings, 77 (2014) 1428-1435. https://doi.org/10.1016/j.porgcoat.2014.05.007
[75] M. Yeganeh, A. Keyvani, The effect of mesoporous silica nanocontainers incorporation on the corrosion behavior of scratched polymer coatings, Prog. Org. Coatings, 90 (2016) 296-303. https://doi.org/10.1016/j.porgcoat.2015.11.006
[76] M. Yeganeh, N. Asadi, M. Omidi, M. Mahdavian, An investigation on the corrosion behavior of the epoxy coating embedded with mesoporous silica nanocontainer loaded by sulfamethazine inhibitor, Prog. Org. Coatings, 128 (2019) 75-81. https://doi.org/10.1016/j.porgcoat.2018.12.022
[77] M. Amini, R. Naderi, M. Mahdavian, A. Badiei, Effect of Piperazine Functionalization of Mesoporous Silica Type SBA-15 on the Loading E ffi ciency of 2 ‑ Mercaptobenzothiazole Corrosion Inhibitor, Ind. Eng. Chem. Res. 59 (2020) 3394-3404. https://doi.org/10.1021/acs.iecr.9b05261
[78] M. Yeganeh, M. Omidi, S. H. H. Mortazavi, A. Etemad, M. H. Nazari, S. M. Marashi, Application of mesoporous silica as the nanocontainer of corrosion inhibitor, in: S. Rajendran, T, Anh Nguyen, S. Kakooei, M. Yeganeh, Y. Li, corrosion protection at the nanoscale, Elsevier, United Kingdom, 2020, pp. 275-294. https://doi.org/10.1016/B978-0-12-819359-4.00015-5
[79] M. Yeganeh, M. Saremi, Corrosion inhibition of magnesium using biocompatible Alkyd coatings incorporated by mesoporous silica nanocontainers, Prog. Org. Coatings 79 (2015) 25-30. https://doi.org/10.1016/j.porgcoat.2014.10.015
[80] A. Keyvani, M. Yeganeh, H. Rezaeyan, Application of mesoporous silica nanocontainers as an intelligent host of molybdate corrosion inhibitor embedded in the epoxy coated steel, Prog. Nat. Sci. Mater. Int. 27 (2017) 261-267. https://doi.org/10.1016/j.pnsc.2017.02.005
[81] J. Wen, J. Lei, J. Chen, L. Liu, X. Zhang, L. Li, Polyethylenimine wrapped mesoporous silica loaded benzotriazole with high pH-sensitivity for assembling self-healing anti-corrosive coatings, Mater. Chem. Phys. 253 (2020) 123425. https://doi.org/10.1016/j.matchemphys.2020.123425
[82] M. Amini, R. Naderi, M. Mahdavian, A. Badiei, Release of lanthanum cations Corrosion Protection at the Nanoscale loaded into piperazine-modified SBA-15 to inhibit the mild steel corrosion, Microporous Mesoporous Mater. 315 (2021) 110908. https://doi.org/10.1016/j.micromeso.2021.110908
[83] J. M. Falcón, L. M. Otubo, I. V Aoki, Highly ordered mesoporous silica loaded with dodecylamine for smart anticorrosion coatings, Surf. coatings Technol. 303B (2016) 319-329. https://doi.org/10.1016/j.surfcoat.2015.11.029
[84] Y. Zhao, J. Xu, J. Zhan, Y. Chen, J. Hu, Electrodeposited superhydrophobic mesoporous silica films co-embedded with template and corrosion inhibitor for active corrosion protection, Appl. Surf. Sci. 508 (2020) 145242. https://doi.org/10.1016/j.apsusc.2019.145242
[85] I. Recloux, M. Mouanga, M. Druart, Y. Paint, M. Olivier, Silica mesoporous thin films as containers for benzotriazole for corrosion protection of 2024 aluminium alloys, Appl. Surf. Sci. 346 (2015) 124-133. https://doi.org/10.1016/j.apsusc.2015.03.191
[86] C. Motte, M. Poelman, A. Roobroeck, M. Fedel, F. Deflorian, M. Olivier, Improvement of corrosion protection offered to galvanized steel by incorporation of lanthanide modified nanoclays in silane layer, Prog. Org. Coatings 74 (2012) 326-333. https://doi.org/10.1016/j.porgcoat.2011.12.001
[87] S. Bohm, H. N. McMurray, S. M. Powell, D. A. Worsley, Novel environment friendly corrosion inhibitor pigments based on naturally occurring clay minerals, Mater. Corros. 52 (2001) 896-903. https://doi.org/10.1002/1521-4176(200112)52:12<896::AID-MACO896>3.0.CO;2-8
[88] C. Deya, R. Romagnoli, B. Amo, A new pigment for smart anticorrosive coatings, J. Coatings Technol. Res. 4 (2007) 167-175. https://doi.org/10.1007/s11998-007-9021-4
[89] C. Zhou, D. Tong, W. Yu, Smectite nanomaterials: Preparation, properties, and functional applications, in: A. Wang, W. Wang, Nanomaterials from Clay Minerals: A New Approach to Green Functional Materials, Elsevier, United Kingdom, 2019, pp. 335-364. https://doi.org/10.1016/B978-0-12-814533-3.00007-7
[90] M. Massaro, G. Cavallaro, G. Lazzara, S. Riela, Covalently modified nanoclays: synthesis, properties and applications, in: G. Cavallaro, Clay Nanoparticles, INC, Italy, 2020, pp. 305-333. https://doi.org/10.1016/B978-0-12-816783-0.00013-X
[91] F. Uddin, Clays, nanoclays, and montmorillonite minerals, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 39 (2008) 2804-2814. https://doi.org/10.1007/s11661-008-9603-5
[92] N. Asadi, R. Naderi, Nanoparticles incorporated in silane solegel coatings, in: S. Rajendran, T, Anh Nguyen, S. Kakooei, M. Yeganeh, Y. Li, corrosion protection at the nanoscale, Elsevier, United Kingdom, 2020, pp. 450-469. https://doi.org/10.1016/B978-0-12-819359-4.00023-4
[93] N. Asadi, R. Naderi, M. Saremi, S. Y. Arman, M. Fedel, F. Deflorian, Study of corrosion protection of mild steel by eco-friendly silane sol-gel coating, J. Sol-Gel Sci. Technol. 70 (2014) 329-338. https://doi.org/10.1007/s10971-014-3286-8
[94] M. Fedel, M. Olivier, M. Poelman, F. Deflorian, S. Rossi, M. Druart, Corrosion protection properties of silane pre-treated powder coated galvanized steel, Prog. Org. Coatings 66 (2009) 118-128. https://doi.org/10.1016/j.porgcoat.2009.06.011
[95] M. Golomeova, A. Zendelska, Application of Some Natural Porous Raw Materials for Removal of Lead and Zinc from Aqueous Solutions, in: R. S. Dariani, Microporous and Mesoporous Materials, inTech, Croatia, 2016, pp. 21-49. https://doi.org/10.5772/62347
[96] L. Calabrese, L. Bonaccorsi, E. Proverbio, Corrosion protection of aluminum 6061 in NaCl solution by silane-zeolite composite coatings, J. Coatings Technol. Res. 9 (2012) 597-607. https://doi.org/10.1007/s11998-011-9391-5
[97] N. Asadi, R. Naderi, M. Saremi, Applied Clay Science Determination of optimum concentration of cloisite in an eco-friendly silane sol-gel film to improve corrosion resistance of mild steel, Appl. Clay Sci. 95 (2014) 243-251. https://doi.org/10.1016/j.clay.2014.04.018
[98] S. A. S. Dias, S. V Lamaka, C. A. Nogueira, T. C. Diamantino, M. G. S. Ferreira, Sol – gel coatings modified with zeolite fillers for active corrosion protection of AA2024, Corros. Sci. 62 (2012) 153-162. https://doi.org/10.1016/j.corsci.2012.05.009
[99] W. Zhang, G. S. Frankel, Transitions between pitting and intergranular corrosion in AA2024, Electrochim. Acta 48 (2003) 1193-1210. https://doi.org/10.1016/S0013-4686(02)00828-9
[100] M. L. Zheludkevich, K. A. Yasakau, S. K. Poznyak, M. G. S. Ferreira, Triazole and thiazole derivatives as corrosion inhibitors for AA2024 aluminium alloy, Corros. Sci. 47 (2005) 3368-3383. https://doi.org/10.1016/j.corsci.2005.05.040
[101] A. Boag, A. E. Hughes, A. M. Glenn, T. H. Muster, D. Mcculloch, Corrosion of AA2024-T3 Part I: Localised corrosion of isolated IM particles, Corros. Sci. 53 (2011) 17-26. https://doi.org/10.1016/j.corsci.2010.09.009
[102] A. E. Hughes, A. Boag, A. M. Glenn, D. McCulloch, T. H. Muster, C. Ryan, C. Luo, X. Zhou, G. E. Thompson, Corrosion of AA2024-T3 Part II : Co-operative corrosion, Corros. Sci. 53 (2011) 27-39. https://doi.org/10.1016/j.corsci.2010.09.030
[103] L. Rassouli, R. Naderi, M. Mahdavain, The role of micro / nano zeolites doped with zinc cations in the active protection of epoxy ester coating, Appl. Surf. Sci. 423 (2017) 571-583. https://doi.org/10.1016/j.apsusc.2017.06.245
[104] L. Rassouli, R. Naderi, M. Mahdavian, A. M. Arabi, Synthesis and Characterization of Zeolites for Anti-corrosion Application: The Effect of Precursor and Hydrothermal Treatment, J. Mater. Eng. Perform. 27 (2018) 4625-4634. https://doi.org/10.1007/s11665-018-3602-5
[105] L. Rassouli, R. Naderi, M. Mahdavian, Study of the active corrosion protection properties of epoxy ester coating with zeolite nanoparticles doped with organic and inorganic inhibitors, J. Taiwan Inst. Chem. Eng. 85 (2018) 207-220. https://doi.org/10.1016/j.jtice.2017.12.023
[106] L. Rassouli, R. Naderi, M. Mahdavain, Study of the impact of sequence of corrosion inhibitor doping in zeolite on the self-healing properties of silane sol-gel film, J. Ind. Eng. Chem. 66 (2018) 221-230. https://doi.org/10.1016/j.jiec.2018.05.033
[107] B. Singh, Why Does Halloysite Roll?-A New Model, Clays Clay Miner. 44 (1996) 191-196. https://doi.org/10.1346/CCMN.1996.0440204
[108] B. Singh, D. R. M. Ian, Experimental transformation of kaolinite to halloysite, Clays Clay Miner. 44 (1996) 825-834. https://doi.org/10.1346/CCMN.1996.0440614
[109] E. Joussein, S. Petit, J. Churchman, B. Theng, D. Righi, B. Delvaux, Halloysite clay minerals-a review, Clay Miner. 40 (2005) 383-426. https://doi.org/10.1180/0009855054040180
[110] G. Cavallaro, L. Chiappisi, P. Pasbakhsh, M. Gradzielski, G. Lazzara, A structural comparison of halloysite nanotubes of different origin by Small-Angle Neutron Scattering (SANS) and Electric Birefringence, Appl. Clay Sci. 160 (2018) 71-80. https://doi.org/10.1016/j.clay.2017.12.044
[111] P. Yuan, D. Tan, F. Annabi-bergaya, Properties and applications of halloysite nanotubes : recent research advances and future prospects, Appl. Clay Sci. 112-113 (2015) 75-93. https://doi.org/10.1016/j.clay.2015.05.001
[112] D. Fix, D. V. Andreeva, Y. M. Lvov, D. G. Shchukin, H. Möhwald, Application of inhibitor-loaded halloysite nanotubes in active anti-corrosive coatings, Adv. Funct. Mater. 19 (2009) 1720-1727. https://doi.org/10.1002/adfm.200800946
[113] Y. M. Lvov, D. G. Shchukin, H. Möhwald, R. R. Price, Halloysite clay nanotubes for controlled release of protective agents, ACS Nano 2 (2008) 814-820. https://doi.org/10.1021/nn800259q
[114] Y. Lvov, W. Wang, L. Zhang, R. Fakhrullin, Halloysite Clay Nanotubes for Loading and Sustained Release of Functional Compounds, Adv. Mater. 28 (2016) 1227-1250. https://doi.org/10.1002/adma.201502341
[115] G. Tari, I. Bobos, C. S. F. Gomes, J. M. . Ferreira, Modification of Surface Charge Properties during Kaolinite to Halloysite-7Å Transformation, J. Colloid Interface Sci. 210 (1999) 360-366. https://doi.org/10.1006/jcis.1998.5917
[116] N. G. Veerabadran, R. R. Price, Y. M. Lvov, Clay Nanotubes for Encapsulation and Sustained Release of Drugs, Nano 2 (2007) 115-120. https://doi.org/10.1142/S1793292007000441
[117] P. Yuan, P. D. Southon, Z. Liu, M. E. R. Green, J. M. Hook, S. J. Antill, C. J. Kepert, Functionalization of Halloysite Clay Nanotubes by Grafting with γ-Aminopropyltriethoxysilane, J. Phys. Chem. C 112 (2008) 15742-15751. https://doi.org/10.1021/jp805657t
[118] N. Asadi, R. Naderi, M. Mahdavian, Halloysite nanotubes loaded with imidazole dicarboxylic acid to enhance protection properties of a polymer coating, Prog. Org. Coatings 127 (2019) 375-384. https://doi.org/10.1016/j.porgcoat.2018.11.035
[119] N. Asadi, R. Naderi, M. Mahdavian, Doping of zinc cations in chemically modified halloysite nanotubes to improve protection function of an epoxy ester coating, Corros. Sci. 151 (2019) 69-80. https://doi.org/10.1016/j.corsci.2019.02.022
[120] A. R. Erdogan, I. Kaygusuz, C. Kaynak, Influences of Aminosilanization of Halloysite Nanotubes on the Mechanical Properties of Polyamide-6 Nanocomposites, Polym. Compos. 16 (2014) 1350-1361. https://doi.org/10.1002/pc.22787
[121] N. Asadi, R. Naderi, M. Mahdavian, Synergistic e ff ect of imidazole dicarboxylic acid and Zn2+ simultaneously doped in halloysite nanotubes to improve protection of epoxy ester coating, Prog. Org. Coatings 132 (2019) 29-40. https://doi.org/10.1016/j.porgcoat.2019.03.021
[122] A. Bahrani, R. Naderi, M. Mahdavian, Chemical modification of talc with corrosion inhibitors to enhance the corrosion protective properties of epoxy-ester coating, Prog. Org. Coatings 120 (2018) 110-122. https://doi.org/10.1016/j.porgcoat.2018.03.017
[123] H. Elfaki, A. Hawari, C. Mulligan, Enhancement of multi-media filter performance using talc as a new filter aid material: Mechanistic study, J. Ind. Eng. Chem. 24 (2015) 71-78. https://doi.org/10.1016/j.jiec.2014.09.010
[124] C. J. Ngally Sabouang, J. A. Mbey, Liboum, F. Thomas, D. Njopwouo, Talc as raw material for cementitious products formulation, J. Asian Ceram. Soc. 2 (2014) 263-267. https://doi.org/10.1016/j.jascer.2014.05.007
[125] M. Sprynskyy, T. Kowalkowski, H. Tutu, E. M. Cukrowska, B. Buszewski, Adsorption performance of talc for uranium removal from aqueous solution, Chem. Eng. J. 171 (2011) 1185-1193. https://doi.org/10.1016/j.cej.2011.05.022
[126] S. Şener, A. Özyilmaz, Adsorption of naphthalene onto sonicated talc from aqueous solutions, Ultrason. Sonochem. 17 (2010) 932-938. https://doi.org/10.1016/j.ultsonch.2009.12.014
[127] I. M. Ali, Y. H. Kotp, I. M. El-Naggar, Thermal stability, structural modifications and ion exchange properties of magnesium silicate, Desalination 259 (2010) 228-234. https://doi.org/10.1016/j.desal.2010.03.054
[128] R. Choudhary, S. Koppala, S. Swamiappan, Bioactivity studies of calcium magnesium silicate prepared from eggshell waste by sol-gel combustion synthesis, J. Asian Ceram. Soc. 3 (2015) 173-177. https://doi.org/10.1016/j.jascer.2015.01.002
[129] R. Mahmoudi, P. Kardar, A. M. Arabi, R. Amini, P. Pasbakhsh, The active corrosion performance of silane coating treated by praseodymium encapsulated with halloysite nanotubes, Prog. Org. Coatings 138 (2020) 105404. https://doi.org/10.1016/j.porgcoat.2019.105404
[130] E. N. Brown, M. R. Kessler, N. R. Sottos, S. R. White, In situ poly(urea-formaldehyde) microencapsulation of dicyclopentadiene, J. Microencapsul. 20 (2003) 719-730. https://doi.org/10.1080/0265204031000154160
[131] S. H. Adsul, U. D. Bagale, S. H. Sonawane, R. Subasri, Release rate kinetics of corrosion inhibitor loaded halloysite nanotube-based anticorrosion coatings on magnesium alloy AZ91D, 9 (2020) 202-215. https://doi.org/10.1016/j.jma.2020.06.010
[132] X. Xing, D. Zhou, E. Tang, S. Liu, X. Chu, X. Xu, A novel method to control the release rate of halloysite encapsulated Na2MoO4 with Ca2+ and corrosion resistance for Q235 steel, Appl. Clay Sci. 188 (2020) 105492. https://doi.org/10.1016/j.clay.2020.105492
[133] S. S. Kumar, S. Kakooei, M. C. Ismail, M. Haris, Synthesis and characterization of metal ion end capped nanocontainer loaded with duo green corrosion inhibitors, J. Mater. Res. Technol. 9 (2020) 8350-8354. https://doi.org/10.1016/j.jmrt.2020.05.110
[134] E. Abdullayev, Y. Lvov, Clay nanotubes for corrosion inhibitor encapsulation : Release control with end stoppers, J. Mater. Chem. 20 (2010) 6681-6687. https://doi.org/10.1039/c0jm00810a
[135] X. Xing, X. Xu, J. Wang, W. Hu, Preparation, release and anticorrosion behavior of a multi-corrosion inhibitors-halloysite nanocomposite, Chem. Phys. Lett. 718 (2019) 69-73. https://doi.org/10.1016/j.cplett.2019.01.033
[136] M. Izadi, T. Shahrabi, I. Mohammadi, B. Ramezanzadeh, A. Fateh, The electrochemical behavior of nanocomposite organic coating based on clay nanotubes filled with green corrosion inhibitor through a vacuum-assisted procedure, Compos. part B 171 (2019) 96-110. https://doi.org/10.1016/j.compositesb.2019.04.019