Biomaterials with Bioactive features Developed using Ulvan as Key Component within a Bioeconomy Approach
M.D. Torres, H. Domínguez
Ulvan is a bioactive marine sulphated polysacharide that can be extracted from green algae. This biopolymer can form thermoreversible gels depending on the chemical composition and structure, showing a great potential. The cold-set gelling properties and unique shear-thickening fluid properties of this biopolymer could be valuable for the exploration of ulvans as a new source of water-soluble biodegradable gelling polysaccharides. The lack of cytotoxicity and specific properties make these gels also useful for novel biomedical applications. This chapter presents an overview on the extraction conditions of ulvans, which are key since they can affect the macromolecular distribution, rheological or textural, and bioactive properties of the isolated biopolymer, and offer a wide application field. Their chemical properties, atypical gelling performance and the corresponding mechanical characteristics are addressed. Their potential to formulate biodegradable hydrogels, to be used in 3D printing, and some representative applications will be covered.
Keywords
Green Seaweeds, Sulphated Polysaccharides, Bioactive, Biopolymers, Printable Hydrogels
Published online 8/10/2023, 25 pages
Citation: M.D. Torres, H. Domínguez, Biomaterials with Bioactive features Developed using Ulvan as Key Component within a Bioeconomy Approach, Materials Research Foundations, Vol. 149, pp 368-392, 2023
DOI: https://doi.org/10.21741/9781644902639-10
Part of the book on New Materials for a Circular Economy
References
[1] A.I. Eismann, R. Perpetuo Reis, A. Ferreira da Silva, D. Negrão Cavalcanti. Ulva spp. carotenoids: Responses to environmental conditions. Algal Res. 48 (2020) 101916. https://doi.org/10.1016/j.algal.2020.101916
[2] C.F.H. Joniver, A. Photiades, P.J. Moore, A.L. Winters, A. Woolmer, J.M.M. Adams. The global problem of nuisance macroalgal blooms and pathways to its use in the circular economy. Algal Res. 58 (2021) 102407. https://doi.org/10.1016/j.algal.2021.102407
[3] L. Ning, Z. Yao, B. Zhu. Ulva (Enteromorpha) Polysaccharides and Oligosaccharides: A Potential Functional Food Source from Green-Tide-Forming Macroalgae. Marine Drugs 20 (2022) 202. https://doi.org/10.3390/md20030202
[4] R. Pangestuti. Nutritional value and biofunctionalities of two edible green seaweeds (Ulva lactuca and Caulerpa racemosa) from Indonesia by subcritical water hydrolysis. Marine Drugs 19 (2021) 578. https://doi.org/10.3390/md19100578
[5] M. Kendel. Lipid composition, fatty acids and sterols in the seaweeds Ulva armoricana, and solieria chordalis from brittany (France): An analysis from nutritional, chemotaxonomic, and antiproliferative activity perspectives. Marine Drugs 13 (2015) 5606 – 5628. https://doi.org/10.3390/md13095606
[6] E. Sulastri, R. Lesmana, M.S. Zubair, K.M. Elamin, N. Wathoni. A comprehensive review on ulvan based hydrogel and its biomedical applications. Chem. Pharm. Bull. 69 (2021) 432 – 443. https://doi.org/10.1248/cpb.c20-00763
[7] J.T. Kidgell, C.R.K. Glasson, M. Magnusson, G. Vamvounis, I.M. Sims, S.M. Carnachan, S.F.R. Hinkley, A.L. Lopata, R. Nys, A.C. Taki. The molecular weight of ulvan affects the in vitro inflammatory response of a murine macrophage. Int. J. Biol. Macromol. 150 (2020) 839 – 8481. https://doi.org/10.1016/j.ijbiomac.2020.02.071
[8] K. Hardouin, G. Bedoux, A.-S. Burlot, C. Donnay-Moreno, J.-P. Bergé, P. Nyvall-Collén, N. Bourgougnon. Enzyme-assisted extraction (EAE) for the production of antiviral and antioxidant extracts from the green seaweed Ulva armoricana (Ulvales, Ulvophyceae). Algal Res. 16 (2016) 233 – 239. https://doi.org/10.1016/j.algal.2016.03.013
[9] F. Rahimi, M. Tabarsa, M. Rezaei. Ulvan from green algae Ulva intestinalis: optimization of ultrasound-assisted extraction and antioxidant activity. J. Appl. Phycol. 28 (2016) 2979 – 2990. https://doi.org/10.1007/s10811-016-0824-5
[10] T.T.T. Thanh, T.M.T. Quach, T.U. Nguyen, D. Vu Luong, M.L. Bui, T.T.V. Tran. Structure and cytotoxic activity of ulvan extracted from green seaweed Ulva lactuca. Int. J. Biol. Macromol. 93 (2016) 695-702. https://doi.org/10.1016/j.ijbiomac.2016.09.040
[11] M. Tabarsa, S. G. You, E. H. Dabaghian, U. Surayot. Water-soluble polysaccharides from Ulva intestinalis: Molecular properties, structural elucidation and immunomodulatory activities. J. Food Drug Anal. 26 (2018) 599 – 608. https://doi.org/10.1016/j.jfda.2017.07.016
[12] T.T.V. Tran, H.B. Truong, N.H.V. Tran, T.M.T. Quach, T.N. Nguyen, M.L. Bui, Y. Yuguchi, T.T.T. Thanh. Structure, conformation in aqueous solution and antimicrobial activity of ulvan extracted from green seaweed Ulva reticulata. Natural Prod. Res. 32 (2018) 2291-2296. https://doi.org/10.1080/14786419.2017.1408098
[13] X.-Y. Liu, D. Liu, G.-P. Lin, Y.-J. Wu, L.-Y. Gao, C. Ai, Y.-F. Huang, M.-F. Wang, H.R. El-Seedi, X.-H. Chen, C. Zhao. Anti-ageing and antioxidant effects of sulfate oligosaccharides from green algae Ulva lactuca and Enteromorpha prolifera in SAMP8 mice. Int. J. Biol. Macromol. 139 (2019) 342 – 351. https://doi.org/10.1016/j.ijbiomac.2019.07.195
[14] J.T. Kidgell, S.M. Carnachan, M. Magnusson, R.J. Lawton, I.M. Sims, S.F.R. Hinkley, R. de Nys, C.R.K. Glasson. Are all ulvans equal? A comparative assessment of the chemical and gelling properties of ulvan from blade and filamentous Ulva. Carbohydr. Polym. 264 (2021) 118010. https://doi.org/10.1016/j.carbpol.2021.118010
[15] K.P. Anjali, B.M. Snageetha, G. Devi, R. Raghunathan, S. Dutta. Bioprospecting of seaweeds (Ulva lactuca and Stoechospermum marginatum): The compound characterization and functional applications in medicine-a comparative study. J. Photochem. Photobioolgy B: Biol. 200 (2019) 111622. https://doi.org/10.1016/j.jphotobiol.2019.111622
[16] N.F. Ardita, L. Mithasari, D. Untoro, S.I. Oktavia-Salasia. Potential antimicrobial properties of the Ulva lactuca extract against methicillin-resistant Staphylococcus aureus-infected wounds: A review. Veterinary World 14 (2021) 1116 – 1123. https://doi.org/10.14202/vetworld.2021.1116-1123
[17] M. Fournière, T. Latire, M. Lang, N. Terme, N. Bourgougnon, G. Bedoux. Production of active poly- and oligosaccharidic fractions from Ulva sp. by combining enzyme-assisted extraction (EAE) and depolymerization. Metabolites 9 (2019) 182. https://doi.org/10.3390/metabo9090182
[18] M. Fournière, G. Bedoux, N. Lebonvallet, R. Leschiera, C. Goff-Pain, N. Bourgougnon, T. Latire. Poly-and oligosaccharide Ulva sp. fractions from enzyme-assisted extraction modulate the metabolism of extracellular matrix in human skin fibroblasts: Potential in anti-aging dermo-cosmetic applications. Marine Drugs 19 (2021) 156. https://doi.org/10.3390/md19030156
[19] M. Fournière, G. Bedoux, D. Souak, N. Bourgougnon, M.G.J. Feuilloleyv, T. Latire. Effects of Ulva sp. Extracts on the growth, biofilm production, and virulence of skin bacteria microbiota: Staphylococcus aureus, Staphylococcus epidermidis, and Cutibacterium acnes strains. Molecules 26 (2021) 4763. https://doi.org/10.3390/molecules26164763
[20] M. Guidara, H. Yaich, I. B. Amor, J. Fakhfakh, J. Gargouri, S. Lassoued, C. Blecker, A. Richel, H. Attia, H. Garna. Effect of extraction procedures on the chemical structure, antitumor and anticoagulant properties of ulvan from Ulva lactuca of Tunisia coast. Carbohydrate Polym. 253 (2021) 117283. https://doi.org/10.1016/j.carbpol.2020.117283
[21] Y.-H.R. Hung, G.-W. Chen, C.-L. Pan, H.-T.V. Lin. Production of ulvan oligosaccharides with antioxidant and angiotensin-converting enzyme-inhibitory activities by microbial enzymatic hydrolysis. Fermentation 7 (2021) 160. https://doi.org/10.3390/fermentation7030160
[22] M.-C. Wan, W. Qin, C. Lei, Q.-H. Li, M. Meng, M. Fang, W. Song, J.-H. Chen, F. Tay, L.-N. Niu. Biomaterials from the sea: Future building blocks for biomedical applications. Bioactive Mat. 6 (2021) 4255 – 4285. https://doi.org/10.1016/j.bioactmat.2021.04.028
[23] T. Wassie, K. Niu, C. Xie, H. Wang, W. Xin. Extraction Techniques, Biological Activities and Health Benefits of Marine Algae Enteromorpha prolifera Polysaccharide. Frontiers Nutri., 87 (2021) 747928. https://doi.org/10.3389/fnut.2021.747928
[24] D. Liu, Y. Ouyang, R. Chen, M. Wang, C. Ai, H.R. El-Seedi, Md.M.R. Sarker, X. Chen, C. Zhao. Nutraceutical potentials of algal ulvan for healthy aging. Int. J. Biol. Macromol. 194 (2021) 422 – 434. https://doi.org/10.1016/j.ijbiomac.2021.11.084
[25] S. Shen, X. Chen, Z. Shen, H. Chen. Marine polysaccharides for wound dressings application: An overview. Pharmaceutics 13 (2021) 1666. https://doi.org/10.3390/pharmaceutics13101666
[26] F. Menaa, U. Wijesinghe, G. Thiripuranathar, N.A. Althobaiti, A.E. Albalawi, B.A. Khan, B. Menaa. Marine algae-derived bioactive compounds: A new wave of nanodrugs? Marine Drugs 19 (2021) 484. https://doi.org/10.3390/md19090484
[27] C. Costa, A. Alves, P.R. Pinto, R.A. Sousa, E.A. Borges Da Silva, R.L. Reis. Rodrigues A.E. Characterization of ulvan extracts to assess the effect of different steps in the extraction procedure. Carbohydr. Polym. 88 (2012) 537 – 5462. https://doi.org/10.1016/j.carbpol.2011.12.041
[28] S. Shefer, A. Robin, A. Chemodanov, M. Lebendiker, R. Bostwick, L. Rasmussen, M. Lishner, M. Gozin, A. Golberg. Fighting SARS-CoV-2 with green seaweed Ulva sp. extract: Extraction protocol predetermines crude ulvan extract anti-SARS-CoV-2 inhibition properties in in vitro Vero-E6 cells assay. Peer J. 9 (2021) 12398. https://doi.org/10.7717/peerj.12398
[29] L.P. Gomez, C. Alvarez, M. Zhao, U. Tiwari, J. Curtin, M. Garcia-Vaquero, B.K. Tiwari. Innovative processing strategies and technologies to obtain hydrocolloids from macroalgae for food applications. Carbohydr. Polym. 24815 (2020) 116784. https://doi.org/10.1016/j.carbpol.2020.116784
[30] H. Vaghari, M. Eskandari, V. Sobhani, A. Berenjian, Y. Song, H. Jafarizadeh-Malmiri. Process Intensification for Production and Recovery of Biological Products, American Journal of Biochemistry and Biotechnology, 11, (2015), 37-43. https://doi.org/10.3844/ajbbsp.2015.37.43
[31] F. Tian, R.‐H. Zhang, X. Wang. A positive feedback onto ENSO due to tropical instability wave (TIW)‐induced chlorophyll effects in the Pacific. Geophysical Research Letters, 46, 2019, 889-897. https://doi.org/10.1029/2018GL081275
[32] P.R. Postma, O. Cerezo-Chinarro, R.J. Akkerman, G. Olivieri, R.H. Wijffels, W.A. Brandenburg, M.H.M. Eppink. Biorefinery of the macroalgae Ulva lactuca: extraction of proteins and carbohydrates by mild disintegration. J. Appl. Phycol. 30 (2018) 1281 – 1293. https://doi.org/10.1007/s10811-017-1319-8
[33] J. Chen, W. Zeng, J. Gan, Y. Li, Y. Pan, J. Li, H. Chen. Physicochemical properties and anti-oxidation activities of ulvan from Ulva pertusa Kjellm. Algal Res. 55 (2021) 102269. https://doi.org/10.1016/j.algal.2021.102269
[34] A. Kartik, D. Akhil, D. Lakshmi, K. Panchamoorthy Gopinath, J. Arun, R. Sivaramakrishnan, A. Pugazhendhi. A critical review on production of biopolymers from algae biomass and their applications. Biores. Tech. 329 (2021) 124868. https://doi.org/10.1016/j.biortech.2021.124868
[35] Y. Kumar, S. Singhal, A. Tarafdar, A. Pharande, M. Ganesan, P.C. Badgujar Ultrasound assisted extraction of selected edible macroalgae: Effect on antioxidant activity and quantitative assessment of polyphenols by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Algal Res. 5 (2020) 102114. https://doi.org/10.1016/j.algal.2020.102114
[36] C.R.K. Glasson, L. Donnet, A. Angell, M.J. Vucko, A.J. Lorbeer, G. Vamvounis, R. de Nys, M. Magnusson. Multiple response optimisation of the aqueous extraction of high quality ulvan from Ulva ohnoi. Biores. Technol Rep. 7 (2019) 100262. https://doi.org/10.1016/j.biteb.2019.100262
[37] C. Ben Amor, M.A. Jmel, P. Chevallier, D. Mantovani, I. Smaali. Efficient extraction of a high molecular weight ulvan from stranded Ulva sp. biomass: application on the active biomembrane synthesis. Biomass Conversion Biorefinery 10.1007/s13399-021-01426-9.
[38] Y. Pengzhan, Z. Quanbin, L. Ning, X. Zuhong, W. Yanmei, L. Zhi’en. Polysaccharides from Ulva pertusa (Chlorophyta) and preliminary studies on their antihyperlipidemia activity. J. Appl. Phycol. 15 (2003) 21 – 27. https://doi.org/10.1023/A:1022997622334
[39] M.I.A. Ibrahim, M.S. Amer, H.A.H. Ibrahim, E.H. Zaghloul. Considerable Production of Ulvan from Ulva lactuca with Special Emphasis on Its Antimicrobial and Anti-fouling Properties. Applied Biochem. Biotechnol. 194 (2022) 3097 – 3118. https://doi.org/10.1007/s12010-022-03867-y
[40] H. Yaich, H. Garna, S. Besbes, M. Paquot, C. Blecker, H. Attia. Effect of extraction conditions on the yield and purity of ulvan extracted from Ulva lactuca. Food Hydrocoll. 31 (2013) 375-382. https://doi.org/10.1016/j.foodhyd.2012.11.013
[41] C.R.K. Glasson, I.M. Sims, S.M. Carnachan, R.de Nys, M. Magnusson. A cascading biorefinery process targeting sulfated polysaccharides (ulvan) from Ulva ohnoi. Algal Res. 27 (2017) 383-391. https://doi.org/10.1016/j.algal.2017.07.001
[42] M. Polikovsky, A. Gillis, E. Steinbruch, A. Robin, M. Epstein, A. Kribus, A. Golberg. Biorefinery for the co-production of protein, hydrochar and additional co-products from a green seaweed Ulva sp. with subcritical water hydrolysis. Ener. Conv. Manag. 225 (2020) 113380. https://doi.org/10.1016/j.enconman.2020.113380
[43] A.F.R. Silva, H. Abreu, A.M.S. Silva, S.M. Cardoso. Effect of oven-drying on the recovery of valuable compounds from Ulva rigida, Gracilaria sp. and Fucus vesiculosus. Marine Drugs 17 (2019) 90. https://doi.org/10.3390/md17020090
[44] S. Tsubaki, O. Kiriyoa, H. Masanoric, O. Ayumub, M. Tomohiko. Microwave-assisted hydrothermal extraction of sulfated polysaccharides from Ulva spp. and Monostroma latissimum. Food Chem. 210 (2016) 311 – 316. https://doi.org/10.1016/j.foodchem.2016.04.121
[45] N. Sari-Chmayssem, S. Taha, H. Mawlawi, J.-P. Guégan, J. Jeftić, T. Benvegnu. Extacted ulvans from green algae Ulva linza of Lebanese origin and amphiphilic derivatives: evaluation of their physico-chemical and rheological properties. J. Applied Phycol. 31 (2019) 1931 – 19461. https://doi.org/10.1007/s10811-018-1668-y
[46] B. Le, K.S. Golokhvast, S.H. Yang, S. Sun. Optimization of microwave-assisted extraction of polysaccharides from Ulva pertusa and evaluation of their antioxidant activity. Antioxidants 8 (2019) 129. https://doi.org/10.3390/antiox8050129
[47] Y. Yuan, X. Xu, C. Jing., P. Zou, C. Zhang, Y. Li. Microwave assisted hydrothermal extraction of polysaccharides from Ulva prolifera: Functional properties and bioactivities. Carbohyd. Polym. 181 (2018) 902 – 910. https://doi.org/10.1016/j.carbpol.2017.11.061
[48] J. Kim, S.H. Ha. Hydrothermal pretreatment of Ulva pertusa Kjellman using microwave irradiation for enhanced enzymatic hydrolysis. Korean Chem. Eng. Res. 53 (2015) 570 – 575. https://doi.org/10.9713/kcer.2015.53.5.570
[49] H. Tian, X. Yin, Q. Zeng, L. Zhu, J. Chen. Isolation, structure, and surfactant properties of polysaccharides from Ulva lactuca L. from South China Sea. Int. J. Biol. Macromol. 79 (2015) 577 – 582. https://doi.org/10.1016/j.ijbiomac.2015.05.031
[50] M. Prabhu, K. Levkov, Y.D. Livney, A. Israel, A. Golberg. High-Voltage Pulsed electric field preprocessing enhances extraction of starch, proteins, and ash from marine macroalgae Ulva ohnoi. ACS Sust. Chem. Eng. 7 (2019) 17453-17463. https://doi.org/10.1021/acssuschemeng.9b04669
[51] K. Levkov, Y. Linzon, B. Mercadal, A. Ivorra, C. A. González, A. Golberg. High-voltage pulsed electric field laboratory device with asymmetric voltage multiplier for marine macroalgae electroporation. Innov. Food Sci. Emerg. Technol. 60 (2020) 102288. https://doi.org/10.1016/j.ifset.2020.102288
[52] N. Castejón, K.A. Thorarinsdottir, R. Einarsdótti, K. Kristbergsson, G. Marteinsdóttir. Exploring the potential of icelandic seaweeds extracts produced by aqueous pulsed electric fields-assisted extraction for cosmetic applications. Marine Drugs 19 (2021) 662. https://doi.org/10.3390/md19120662
[53] R. Pezoa-Conte, A. Leyton, A. Baccini, M. C. Ravanal, P. Mäki-Arvela, H. Grénman, C. Xu, S. Willför, M. E. Lienqueo, J.-P. Mikkola. Aqueous Extraction of the Sulfated Polysaccharide Ulvan from the Green Alga Ulva rigida-Kinetics and Modeling. Bioenergy Res. 10 (2017) 915 – 9281. https://doi.org/10.1007/s12155-017-9853-4
[54] N. Flórez-Fernández, M.D. Torres, M.J. González-Muñoz, H. Domínguez. Potential of intensification techniques for the extraction and depolymerization of fucoidan. Algal Res. 30 (2018) 128 – 148. https://doi.org/10.1016/j.algal.2018.01.002
[55] B. Li, S. Liu, R. Xing, K. Li, R. Li, Y. Qin, X. Wang, Z. Wei, P. Li. Degradation of sulfated polysaccharides from Enteromorpha prolifera and their antioxidant activities. Carbohydr. Polym. 92 (2013) 1991 – 1996. https://doi.org/10.1016/j.carbpol.2012.11.088
[56] F. Chemat, N. Rombaut, A.G. Sicaire, A. Meullemiestre, A.S. Fabiano-Tixier, M. Abert-Vian. Ultrasound assisted extraction of food and natural products. mechanisms, techniques, combinations, protocols and applications. a review. Ultrasonics Sonochemistry, 34, (2017), 540-560. https://doi.org/10.1016/j.ultsonch.2016.06.035
[57] M.M. Costa, L.B. Pio, P. Bule, V.A. Cardoso, M. Duarte, C.M. Alfaia, D.F. Coelho, J.A. Brás, C.M.G.A. Fontes, J.A.M. Prates. Recalcitrant cell wall of Ulva lactuca seaweed is degraded by a single ulvan lyase from family 25 of polysaccharide lyases. Animal Nutrition 9 (2022) 184 – 192. https://doi.org/10.1016/j.aninu.2022.01.004
[58] A.S. Jagtap, N.P.V. Sankar, R.I. Ghori, C.S. Manohar. Marine microbial enzymes for the production of algal oligosaccharides and its bioactive potential for application as nutritional supplements. Folia Microbiologica 67 (2022) 175 – 191. https://doi.org/10.1007/s12223-021-00943-4
[59] A. Robin, M. Kazir, M. Sack, A. Israel, W. Frey, G. Mueller, Y.D. A. Livney, Golberg. Functional Protein Concentrates Extracted from the Green Marine Macroalga Ulva sp., by High Voltage Pulsed Electric Fields and Mechanical Press. ACS Sust. Chem. Engi. 6 (2018) 13696 – 137055. https://doi.org/10.1021/acssuschemeng.8b01089
[60] M. Polikovsky, F. Fernand, M. Sack, W. Frey, G. Müller, A. Golberg. Towards marine biorefineries: Selective proteins extractions from marine macroalgae Ulva with pulsed electric fields. Innov. Food Sci. Emerg. Technol. 37 (2016) 194 – 200. https://doi.org/10.1016/j.ifset.2016.03.013
[61] T.-M. Don, L.-M. Liu, M. Chen, Y.-C. Huang. Crosslinked complex films based on chitosan and ulvan with antioxidant and whitening activities. Algal Res. 58 (2021) 102423. https://doi.org/10.1016/j.algal.2021.102423
[62] R. Zhong, W. Xuzhi, D-Q. Wang, C. Zhao, D. Liu, L. Gao, M. Wang, C. Wu, S.M. Nabavid, M. Daglia, J. Xiao, H. Cao. Polysaccharides from Marine Enteromorpha: Structure and function. Trends Food Sci. Tech. 99 (2020) 11 – 20. https://doi.org/10.1016/j.tifs.2020.02.030
[63] L. Juul. Ulva fenestrata protein – Comparison of three extraction methods with respect to protein yield and protein quality. Algal Res. 60 (2021) 102496. https://doi.org/10.1016/j.algal.2021.102496
[64] M. Prabhu, A. Israel, R.R. Palatnik, D. Zilberman, A. Golberg. Integrated biorefinery process for sustainable fractionation of Ulva ohnoi (Chlorophyta): process optimization and revenue analysis. J. Appl. Phycol. 32 (2020) 2271 – 2282. https://doi.org/10.1007/s10811-020-02044-0
[65] V.A. Mantri, M.A. Kazi, N.B. Balar, V. Gupta, T. Gajaria. Concise review of green algal genus Ulva Linnaeus. J. Appl. Phycol. 32 (2020) 2725 – 2741. https://doi.org/10.1007/s10811-020-02148-7
[66] M. Martins, R. Oliveira, J.A.P. Coutinho, M.A.F. Faustino, M.G.M.S. Neves, D.C.G.A. Pinto, S.P.M. Ventura. Recovery of pigments from Ulva rigida. Sep. Pur. Technol. 2551 (2021) 117723. https://doi.org/10.1016/j.seppur.2020.117723
[67] A. Agarwal, A. Mhtre, R. Pandit, A.M. Lali. Synergistic biorefinery of Scenedesmus obliquus and Ulva lactuca in poultry manure towards sustainable bioproduct generation. Biores. Tech. 29 (2020) 122462. https://doi.org/10.1016/j.biortech.2019.122462
[68] C. Andrade, P.L. Martins, L.C. Duarte, A.C. Oliveira, F. Carvalheiro,. Development of an innovative macroalgae biorefinery: Oligosaccharides as pivotal compounds. Fuel 32015 (2022) 123780. https://doi.org/10.1016/j.fuel.2022.123780
[69] M. Magnusson, C.R.K. Glasson, M.J. Vucko, A. Angell, T.L. Neoh, R. Nysbet. Enrichment processes for the production of high-protein feed from the green seaweed Ulva ohnoi. Algal 4 (2019) 101555. https://doi.org/10.1016/j.algal.2019.101555
[70] Y. Ren, A. Aierken, L. Zhao, Z. Lin, J. Jiang, B. Li, J. Wang, J. Hua, Q. Tu. hUC-MSCs lyophilized powder loaded polysaccharide ulvan driven fuctional hydrogel for chronic diabetic wound healing. Carbohydr. Polym. 288 (2022) 119404. https://doi.org/10.1016/j.carbpol.2022.119404
[71] M.A. Madany, M.S. Abdel-Kareem, A.K. Al-Oufy, M. Haroun, S. Sheweita. The biopolymer ulvan from Ulva fasciata: Extraction towards nanofibers fabrication. Int. J. Biol. Macromol. 177 (2021) 401-412. https://doi.org/10.1016/j.ijbiomac.2021.02.047
[72] S. Kikinois, E. Ioannou, E. Aggelidou, L.A. Tziveleka, E. Demiri, A. Bakopoulou, S. Zinelis, A. Kritis, V. Roussis. The marine polysaccharide ulvan confers potent osteoinductive capacity to PCL-based scaffolds for bone tissue engineering applications. Int. J. Mol. Sci. 22 (2021) 3086. https://doi.org/10.3390/ijms22063086
[73] M. Guidara, H. Yaich, S. Benelhadj, Y.D. Adjouman, A. Richel, C. Blecker, M. Sindic, S. Boufi, H. Attia, H. Garna. Smart ulvan films responsive to stimuli of plasticizer and extraction condition in physico-chemical, optical, barrier and mechanical properties. Int. J. Biol. Macromol. 150 (2020) 714 – 7261. https://doi.org/10.1016/j.ijbiomac.2020.02.111
[74] S. Shalaby & H. Amin. Potential Using of Ulvan Polysaccharide from Ulva lactuca as a Prebiotic in Synbiotic Yogurt Production. Journal of Probiotics & Health. (2019) 07. 10.35248/2329-8901.19.7.208. https://doi.org/10.35248/2329-8901.19.7.208
[75] A.R. Ganesan, S. Munisamy, R. Bhat. Producing edible films from semi refined carrageenan (SRC) and ulvan polysaccharides for potential food applications. Int. J. Biol. Macromol. 112 (2018) 1164-1170. https://doi.org/10.1016/j.ijbiomac.2018.02.089
[76] A. Morelli, M. Betti, D. Puppi, F. Chiellini. Design, preparation and characterization of ulvan based thermosensitive hydrogels. Carbohydr. Polym. 136 (2016) 1108-1117. https://doi.org/10.1016/j.carbpol.2015.09.068
[77] E. Sulastri, M.S. Zubair, R. Lesmana, M.N. Wathoni. Development and characterization of ulvan polysaccharides-based hydrogel films for potential wound dressing applications. Drug design, development and therapy 15 (2021) 4213 – 4226. https://doi.org/10.2147/DDDT.S331120
[78] J. Dinoro, M. Maher, S. Talebian, M. Jafarkhani, M. Meharli, G. Orive, J. Foroughi, M.S. Lord, A. Dolatshahi-Pirouz. Sulfated polysaccharide-based scaffolds for orthopaedic tissue engineering. Biomat. 214 (2016) 119214. https://doi.org/10.1016/j.biomaterials.2019.05.025
[79] B. Mahendiran, S. Muthusamy, S. Sampath, S.N. Jaisankar, K.C. Popat, R. Selvakumar, G.S. Krishnakumar. Recent trends in natural polysaccharide based bioinks for multiscale 3D printing in tissue regeneration: A review. Int. J. Biol. Macromol. 183 (2021) 564 – 588. https://doi.org/10.1016/j.ijbiomac.2021.04.179
[80] S. Kogelenberg (2017) Fabrication of ulvan based structures for cell culture in wound healing. Conference proceedings of University of Wollongong Australia.
[81] H.J. Alipour, M. Rezaei, B. Shabanpour, M. Tabarsa. Effects of sulfated polysaccharides from green alga Ulva intestinalis on physicochemical properties and microstructure of silver carp surimi. Food Hydrocoll. 74 (2018) 87 – 96. https://doi.org/10.1016/j.foodhyd.2017.07.038
[82] M. Monteiro, A.S. Lavrador, A. Oliva-Teles, A. Couto, A.P. Carvalho, P. Enes, P. Díaz-Rosales. Macro- and microalgal extracts as functional feed additives in diets for zebrafish juveniles. Aquaculture Res. 52 (2021) 6420 – 6433. https://doi.org/10.1111/are.15507
[83] A. Peña-Rodríguez, R. Elizondo-González, M.G. Nieto-López, D. Ricque-Marie, L.E. Cruz-Suárez. Practical diets for the sustainable production of brown shrimp, Farfantepenaeus californiensis, juveniles in presence of the green macroalga Ulva clathrata as natural food. J. Appl. Phycol. 29 (2017) 413 – 421. https://doi.org/10.1007/s10811-016-0846-z
[84] J. Thunyawanichnondh, N. Suebsiri, S. Leartamonchaikul, W. Pimolsri, W. Jittanit, S. Charoensiddhi. Potential of green seaweed Ulva rigida in Thailand for healthy snacks. J. Fisheries Environ. 44 (2015) 29 – 39.
[85] F. Bussy, S. Rémy, M. Le Goff, P.N. Collén, L. Trapp-Fragnet. The sulphated polysaccharides extract ulvans from Ulva armoricana limits Marek’s disease virus dissemination in vitro and promotes viral reactivation in lymphoid cells. BMC Veterinary Res. 18 (2022) 155. https://doi.org/10.1186/s12917-022-03247-y
[86] N. González-Ballesteros, M.C. Rodríguez-Argüelles, S. Prado-López, M. Lastra, M. Grimaldi, A. Cavazza, L. Nasi, G. Salviati, F. Bigi. Macroalgae to nanoparticles: Study of Ulva lactuca L. role in biosynthesis of gold and silver nanoparticles and of their cytotoxicity on colon cancer cell lines. Materials Sci. Eng. C 97 (2019) 498 – 509. https://doi.org/10.1016/j.msec.2018.12.066
[87] R. Radulovich, S. Umanzor, R. Cabrera, R. Mata. Tropical seaweeds for human food, their cultivation and its effect on biodiversity enrichment. Aquaculture 436 (2015) 40 – 46. https://doi.org/10.1016/j.aquaculture.2014.10.032
[88] G. Bizzaro, A.K. Vatland, D.M. Pampanin. The One-Health approach in seaweed food production. Environment International 158 (2022) 106948. https://doi.org/10.1016/j.envint.2021.106948
[89] D. Desideri, C. Cantaluppi, F. Ceccotto, M.A. Meli, C. Roselli, L. Feduzi. Essential and toxic elements in seaweeds for human consumption. Journal of Toxicology and Environmental Health – Part A, 79 (2016) 112 – 122. https://doi.org/10.1080/15287394.2015.1113598
[90] A.R. Ganesan, K. Subramani, B. Balasubramanian, W.C. Liu, M.V. Arasu, N.A. Al-Dhabi, V. Duraipandiyan. Evaluation of in vivo sub-chronic and heavy metal toxicity of under-exploited seaweeds for food application. J. King Saud University – Sci. 32 (2020) 1088 – 1095. https://doi.org/10.1016/j.jksus.2019.10.005
[91] M.L. Cornish, A.T. Critchley, O.G. Mouritsen. A role for dietary macroalgae in the amelioration of certain risk factors associated with cardiovascular disease. Phycologia 54 (2015) 649 – 666. https://doi.org/10.2216/15-77.1
[92] H. Jannat-Alipour, M. Rezaei, B. Shabanpour, M. Tabarsa. Edible green seaweed, Ulva intestinalis as an ingredient in surimi-based product: chemical composition and physicochemical properties. J. Applied Phycol. 31 (2019) 2529 – 2539. https://doi.org/10.1007/s10811-019-1744-y
[93] J. Thunyawanichnondh, N. Suebsiri, S. Leartamonchaikul, W. Pimolsri, W. Jittanit, S. Charoensiddhi. Potential of green seaweed Ulva rigida in Thailand for healthy snacks. J Fish Environ. 44(1), (2020), 29-39
[94] N. Aprilianti, R.D. Saraswati, S.A. Budhiyanti. The quality of Ulva lactuca fatty acid microemulsion with ascorbic acid antioxidant during storage. IOP Conference Series: Earth and Environmental Science. 4th International Symposium on Marine and Fisheries Research, ISMFR, 919 (2021) 012035. https://doi.org/10.1088/1755-1315/919/1/012035
[95] T. Amoriello, F. Mellara, M. Amoriello, D. Ceccarelli, R. Ciccoritti.Powdered seaweeds as a valuable ingredient for functional breads. European Food Res. Technol. 247 (2021) 2431 – 2443. https://doi.org/10.1007/s00217-021-03804-z
[96] L.T. Nhlane, C.M. Mnisi, V. Mlambo, M.J. Madibana. Effect of seaweed-containing diets on visceral organ sizes, carcass characteristics, and meat quality and stability of Boschveld indigenous hens. Poultry Sci. 100 (2021) 949 – 956. https://doi.org/10.1016/j.psj.2020.11.038
[97] P. Jiménez-Prada, I. Hachero-Cruzado, J.M. Guerra-García. Aquaculture waste as food for amphipods: the case of Gammarus insensibilis in marsh ponds from southern Spain. Aquaculture Int. 29 (2021) 139 – 153. https://doi.org/10.1007/s10499-020-00615-z
[98] S. Carbonara, R. D’Adamo, A. Novelli, S. Pelosi, A. Fabbrocini 2018. Ground Ulva solution (GUS): A promising metamorphosis cue for Paracentrotus lividus larviculture. Aquaculture 491 (2018) 289 – 2941. https://doi.org/10.1016/j.aquaculture.2018.03.044
[99] F. Norambuena, K. Hermon, V. Skrzypczyk, J.A. Emery, Y. Sharon, A. Beard, Turchini G.M. Algae in fish feed: Performances and fatty acid metabolism in juvenile Atlantic Salmon. PLoS ONE 10 (2015) 0124042. https://doi.org/10.1371/journal.pone.0124042
[100] R. Gruskiene, T. Kavleiskaja, R. Staneviciene, S. Kikionis, E. Ioannou, E. Serviene, V. Roussis, J. Sereikaite. Nisin-loaded ulvan particles: Preparation and characterization. Food 10 (2021) 1007. https://doi.org/10.3390/foods10051007
[101]. T.H. Bang, T.T.T. Van, L.X. Hung, N.D. Nhut, T.T.T. Thuy, B.T. Huy. Nanogels of acetylated ulvan enhance the solubility of hydrophobic drug curcumin. Bull. Mat. Sci. 42 (2017) 1. https://doi.org/10.1007/s12034-018-1682-3
[102] S. Coiai, B. Campanella, R. Paulert, F. Cicogna, E. Bramanti, A. Lazzeri, L. Pistelli, M.-B. Coltelli. Rosmarinic acid and Ulvan from terrestrial and marine sources in anti-microbial bionanosystems and biomaterials. Applied Sci. 11 (2021) 9249. https://doi.org/10.3390/app11199249
[103] M. Guidara, H. Yaich, A. Richel, C. Blecker, S. Boufi, H. Attia, H. Garna. Effects of extraction procedures and plasticizer concentration on the optical, thermal, structural and antioxidant properties of novel ulvan films. Int. J. Biol. Macromol. 135 (2019) 647 – 658. https://doi.org/10.1016/j.ijbiomac.2019.05.196
[104] A. Massironi, A. Morelli, L. Grassi, D. Puppi, S. Braccini, G. Maisetta, S. Esin, G. Batoni, C.D. Pina, F. Chiellini. Ulvan as novel reducing and stabilizing agent from renewable algal biomass: Application to green synthesis of silver nanoparticles. Carbohydr. Polym. 203, (2019), 310-321. https://doi.org/10.1016/j.carbpol.2018.09.066
[105] T. Ashokkumar, K. Vijayaraghavan. Mono- and Bimetallic Au(Core)-Ag(Shell) nanoparticles mediated by Ulva reticulata extracts. Chem. Select, 37 (2019) 11009 – 110149. https://doi.org/10.1002/slct.201903202