Superplasticity of Ti-6Al-7Nb alloys with different initial microstructures processed by high-pressure torsion
Kathy González Jiménez, Joaquín E. González Hernández, Jorge M. Cubero-Sesin, Jeremy Barrantes Rodríguez, Zenji Horita
download PDFAbstract. Ti-6Al-7Nb alloy was quenched below and above the β-phase field and processed by high-pressure torsion (HPT) to produce different grain sizes in the ultra-fine range. The influence of temperature and strain rate over the superplastic properties, activation energy and strain rate sensitivity were evaluated by high temperature tensile tests. The mechanical properties were complemented with Vickers microhardness measurement of heat treated and HPT-processed samples. The crystallographic analysis was performed through XRD and EBSD studies in the grip and tip of the high temperature tensile specimens. Microhardness measurements show significant hardening with respect to the imposed strain after HPT. Meanwhile, high superplastic elongation of 1200% was accomplished at 850 °C with a strain rate of 2×10-3 s-1. EBSD studies of the failed specimens suggest that the tip part exhibited dynamic recrystallization during tensile test, which produced a larger grain size of ~5.1 µm and higher fraction of β phase of 3.7%, with respect to the grip part under static recrystallization, which attained ~3.4 µm grain size and 3.3% β phase fraction.
Keywords
High-Pressure Torsion, Ultrafine Grained, Nanostructure, Superplasticity, Strain Rate Sensitivity, Activation Energy
Published online , 9 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: Kathy González Jiménez, Joaquín E. González Hernández, Jorge M. Cubero-Sesin, Jeremy Barrantes Rodríguez, Zenji Horita, Superplasticity of Ti-6Al-7Nb alloys with different initial microstructures processed by high-pressure torsion, Materials Research Proceedings, Vol. 32, pp 72-80, 2023
DOI: https://doi.org/10.21741/9781644902615-7
The article was published as article 7 of the book Superplasticity in Advanced Materials
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] M. Niinomi, Mechanical biocompatibilities of titanium alloys for biomedical applications, J. Mech. Behav. Biomed. Mater. 1 (2008) 30-42. https://doi.org/10.1016/j.jmbbm.2007.07.001
[2] M. Balazic, J. Kopac, M.J. Jackson, W. Ahmed, Review: titanium and titanium alloy applications in medicine, Int. J. Nano and Biomaterials. 1 (2007) 33-34. https://doi.org/10.1504/IJNBM.2007.016517
[3] A.S. Hoffman, Introduction, The Diversity and Versatility of Biomaterials, in: B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E Lemons (Eds.), Biomaterials Science, An Introduction to Materials: Third Edition, Elsevier, Oxford, 2013, pp. 63-64. https://doi.org/10.1016/B978-0-08-087780-8.00007-3
[4] F.H. Froes, Titanium: Physical Metallurgy, Processing, and Applications, ASM International, 2015. https://doi.org/10.31399/asm.tb.tpmpa.9781627083188
[5] M.J. Donachie, Titanium: A Technical Guide, second ed., ASM International, 2000. https://doi.org/10.31399/asm.tb.ttg2.9781627082693
[6] I. Polmear, D. StJohn, J.F. Nie, M. Qian, Titanium Alloys, in: I. Polmear, D. StJohn, J.F. Nie, M. Qian (Eds.), Light Alloys, Metallurgy of the Light Metals, Elsevier, 2017, pp. 369-460. https://doi.org/10.1016/B978-0-08-099431-4.00007-5
[7] S. Lampman, Titanium and Its Alloys for Biomedical Implants, in: R.J Narayan (Eds.), Materials for Medical Devices: Volume 23, ASM International, 2012, pp.223-236. https://doi.org/10.31399/asm.hb.v23.a0005674
[8] M. Naito, T.Yokoyama, M.Hosokawa, K. Nogi, Nanoparticle Technology Handbook, third ed., Elsevier, 2008
[9] T.G. Langdon, Seventy-five years of superplasticity: Historic developments and new opportunities, J. Mater. Sci. 44 (2009) 5998-6010. https://doi.org/10.1007/s10853-009-3780-5
[10] T.G. Langdon, Superplasticity of bulk nanostructured materials, in: M.J. Zehetbauer, Y.T. Zhu (Eds.), Bulk Nanostructured Materials, Wiley-VCH, Germany. 2009 pp.455-468. https://doi.org/10.1002/9783527626892.ch20
[11] Y.H.Z. Zhao, Advanced Mechanical Properties and Deformation Mechanisms of Bulk Nanostructured Materials, Trans. Tech. Publications, 2011.
[12] M.T. Pérez-Prado, M.E. Kassner, Superplasticity, in: M.E. Kassner (Eds), Fundamentals of Creep in Metals and Alloys, Elsevier, 2008: pp. 135-152. https://doi.org/10.1016/B978-0-08-047561-5.00006-3
[13] F.A. Mohamed, Micrograin superplasticity: Characteristics and utilization, Materials. 4 (2011) 1194-1223. https://doi.org/10.3390/ma4061194
[14] M. Kawasaki, T.G. Langdon, Principles of superplasticity in ultrafine-grained materials, J. Mater. Sci. 42 (2007) 1782-1796. https://doi.org/10.1007/s10853-006-0954-2
[15] A. Alhamidi, Z. Horita, Grain refinement and high strain rate superplasticity in alumunium 2024 alloy processed by high-pressure torsion, Mater. Sci. Eng. A. 622 (2015) 139-145. https://doi.org/10.1016/j.msea.2014.11.009
[16] R.Z. Valiev, R.K. Islamgaliev, I. V Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci. 45 (2000) 103-189. https://doi.org/10.1016/S0079-6425(99)00007-9
[17] R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, Y.T. Zhu, Producing Bulk Ultrafine-Grained Materials by Severe Plastic Deformation, JOM. 58 (2006) 33-39. https://doi.org/10.1007/s11837-006-0213-7
[18] R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, Y.T Zhu, Producing Bulk Ultrafine-Grained Materials by Severe Plastic Deformation: Ten Years Later, JOM. 68 (2016) 1216-1226. https://doi.org/10.1007/s11837-016-1820-6
[19] A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski, A. Yanagida, Severe plastic deformation (SPD) processes for metals, CIRP annals. 57 (2008) 716-735. https://doi.org/10.1016/j.cirp.2008.09.005
[20] A.P. Zhilyaev, T.G. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications, Prog Mater Sci. 53 (2008) 893-979. https://doi.org/10.1016/j.pmatsci.2008.03.002
[21] G. Faraji, H.S. Kim, H.T. Kashi, Severe Plastic Deformation: Methods, Processing and Properties, first ed., Elsevier, 2018. https://doi.org/10.1016/B978-0-12-813518-1.00003-5
[22] Z. Liu, P. Li, L. Xiong, T. Liu, L. He, High-temperature tensile deformation behavior and microstructure evolution of Ti55 titanium alloy, Mater. Sci. Eng. A. 680 (2017) 259-269. https://doi.org/10.1016/j.msea.2016.10.095
[23] G. Zhou, L. Chen, L. Liu, H. Liu, H. Peng, Y. Zhong, Low-temperature superplasticity and deformation mechanism of Ti-6Al-4V alloy, Materials. 11 (2018) 1212. https://doi.org/10.3390/ma11071212
[24] E. Alabort, P. Kontis, D. Barba, K. Dragnevski, R.C. Reed, On the mechanisms of superplasticity in Ti-6Al-4V, Acta Mater. 105 (2016) 449-463. https://doi.org/10.1016/j.actamat.2015.12.003
[25] J. Sieniawski, M. Motyka, Superplasticity in titanium alloys, JAMME. 24 (2007)123-130.
[26] W. Zhang, H. Ding, P.H.R. Pereira, Y. Huang, T.G. Langdon, Grain refinement and superplastic flow in a fully lamellar Ti-6Al-4V alloy processed by high-pressure torsion, Mater. Sci. Eng. A. 732 (2018) 398-405. https://doi.org/10.1016/j.msea.2018.07.010
[27] M. Ashida, P. Chen, H. Doi, Y. Tsutsumi, T. Hanawa, Z. Horita, Superplasticity in the Ti-6Al-7Nb alloy processed by high-pressure torsion, Mater. Sci. Eng. A. 640 (2015) 449-453. https://doi.org/10.1016/j.msea.2015.06.020
[28] J.M. Cubero-Sesin, J.E. Gonzalez-Hernandez, E. Ulate-Kolitsky, K. Edalati, Z. Horita, Superplasticity of nanostructured Ti-6Al-7Nb alloy with equiaxed and lamellar initial microstructures processed by High-Pressure Torsion, IOP Conf. Ser.: Mater. Sci. Eng. IOP Publishing, 194 (2017) 1-6. https://doi.org/10.1088/1757-899X/194/1/012041
[29] J. Sieniawski, W. Ziaja, K. Kubiak, M. Motyk, Microstructure and Mechanical Properties of High Strength Two-Phase Titanium Alloys, in: J. Sieniawski, W. Ziaja, K. Kubiak, M. Motyk (Eds), Titanium Alloys -Advances in Properties Control, InTech, 2013, pp.69-80 https://doi.org/10.5772/56197
[30] J. Shen, Y. Sun, Y. Ning, H. Yu, Z. Yao, L. Hu, Superplasticity induced by the competitive DRX between BCC beta and HCP alpha in Ti-4Al-3V-2Mo-2Fe alloy, Mater. Charact. 153 (2019) 304-317. https://doi.org/10.1016/j.matchar.2019.05.014