Ultra-severe plastic deformation for room-temperature superplasticity and superfunctionality
Kaveh Edalati
download PDFAbstract. Ultra-severe plastic deformation (ulta-SPD) is a terminology used for the introduction of extremely large shear strains (over 1000) to material so that the thickness of sheared phases geometrically reaches the subnanometer level. Under such extreme shearing conditions, new nanostructured phases with unique properties are formed even from the immiscible systems. Various metallic alloys and ceramics were developed by this concept for different applications such as room-temperature superplasticity, room-temperature hydrogen storage, photocatalytic hydrogen production, photocatalytic carbon dioxide conversion, etc. This article reviews recent advances regarding ultra-SPD with a focus on low-temperature superplasticity, which was reported for the first time at room temperature in aluminum and magnesium alloys.
Keywords
Severe Plastic Deformation (SPD), High-Pressure Torsions (HPT), Superplasticity, Strain Rate Sensitivity, Functional Properties
Published online , 12 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: Kaveh Edalati, Ultra-severe plastic deformation for room-temperature superplasticity and superfunctionality, Materials Research Proceedings, Vol. 32, pp 41-52, 2023
DOI: https://doi.org/10.21741/9781644902615-4
The article was published as article 4 of the book Superplasticity in Advanced Materials
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci. 45 (2000) 103-189. https://doi.org/10.1016/S0079-6425(99)00007-9
[2] R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, Y.T. Zhu, Producing bulk ultrafine-grained materials by severe plastic deformation, JOM 58(4) (2006) 33-39. https://doi.org/10.1007/s11837-006-0213-7
[3] A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski, A. Yanagida, Severe plastic deformation (SPD) processes for metals, CRIP Ann. Mauuf. Technol. 57 (2008) 716-735. https://doi.org/10.1016/j.cirp.2008.09.005
[4] V. Segal, Review: modes and processes of severe plastic deformation (SPD), Materials 11 (2018) 1175. https://doi.org/10.3390/ma11071175
[5] R. Pippan, S. Scheriau, A. Taylor, M. Hafok, A. Hohenwarter, A. Bachmaier, Saturation of fragmentation during severe plastic deformation, Annu. Rev. Mater. Res. 40 (2010) 319-343. https://doi.org/10.1146/annurev-matsci-070909-104445
[6] M.J. Starink, X.C. Cheng, S. Yang, Hardening of pure metals by high-pressure torsion: A physically based model employing volume-averaged defect evolutions, Acta Mater. 61 (2013) 183-192. https://doi.org/10.1016/j.actamat.2012.09.048
[7] M. Zehetbauer, R. Grossinger, H. Krenn, M. Krystian, R. Pippan, P. Rogl, T. Waitz, R. Wurschum, Bulk nanostructured functional materials by severe plastic deformation, Adv. Eng. Mater. 12 (2010) 692-700. https://doi.org/10.1002/adem.201000119
[8] Y. Estrin, A. Vinogradov, Extreme grain refinement by severe plastic deformation: a wealth of challenging science, Acta Mater. 61 (2013) 782-817. https://doi.org/10.1016/j.actamat.2012.10.038
[9] K. Edalati, A. Bachmaier, V.A. Beloshenko, Y. Beygelzimer, V.D. Blank, W.J. Botta, K. Bryła, J. Čížek, S. Divinski, N.A. Enikeev, Y. Estrin, G. Faraji, R.B. Figueiredo, M. Fuji, T. Furuta, T. Grosdidier, J. Gubicza, A. Hohenwarter, Z. Horita, J. Huot, Y. Ikoma, M. Janeček, M. Kawasaki, P. Krǎl, S. Kuramoto, T.G. Langdon, D.R. Leiva, V.I. Levitas, A. Mazilkin, M. Mito, H. Miyamoto, T. Nishizaki, R. Pippan, V.V. Popov, E.N. Popova, G. Purcek, O. Renk, Á. Révész, X. Sauvage, V. Sklenicka, W. Skrotzki, B.B. Straumal, S. Suwas, L.S. Toth, N. Tsuji, R.Z. Valiev, G. Wilde, M.J. Zehetbauer, X. Zhu, Nanomaterials by severe plastic deformation: review of historical developments and recent advances, Mater. Res. Lett. 10 (2022) 163-256. https://doi.org/10.1080/21663831.2022.2029779
[10] P.W. Bridgman, Effects of high shearing stress combined with high hydrostatic pressure, Phys. Rev. 48 (1935) 825-847. https://doi.org/10.1103/PhysRev.48.825
[11] K. Edalati, Z. Horita, A review on high-pressure torsion (HPT) from 1935 to 1988, Mater. Sci. Eng. A 652 (2016) 325-352. https://doi.org/10.1016/j.msea.2015.11.074
[12] V.M. Segal, V.I. Reznikov, A.E. Drobyshevskiy, V.I. Kopylov, Plastic working of metals by simple shear, Russ. Metall. 1 (1981) 99-105.
[13] R.Z. Valiev, O.A. Kaibyshev, R.I. Kuznetsov, R.S. Musalimov, N.K. Tsenev, Low-temperature superplasticity of metallic materials, Dokl. Akad. Nauk. SSSR 301 (1988) 864-866.
[14] K. Edalati, Z. Horita, Special issue on severe plastic deformation for nanomaterials with advanced functionality, Mater. Trans. 60 (2019) 1103. https://doi.org/10.2320/matertrans.MPR2019904
[15] K. Edalati, T. Masuda, M. Arita, M. Furui, X. Sauvage, Z. Horita, R.Z. Valiev, Room-temperature superplasticity in an ultrafine-grained magnesium alloy, Sci. Rep. 7 (2017) 2662. https://doi.org/10.1038/s41598-017-02846-2
[16] K. Edalati, Z. Horita, R.Z. Valiev, Transition from poor ductility to room-temperature superplasticity in a nanostructured aluminum alloy, Sci. Rep. 8 (2018) 6740. https://doi.org/10.1038/s41598-018-25140-1
[17] K. Edalati, Metallurgical alchemy by ultra-severe plastic deformation via high-pressure torsion process, Mater. Trans. 60 (2019) 1221-1229. https://doi.org/10.2320/matertrans.MF201914
[18] K. Edalati, R. Uehiro, K. Fujiwara, Y. Ikeda, H.W. Li, X. Sauvage, R.Z. Valiev, E. Akiba, I. Tanaka, Z. Horita, Ultra-severe plastic deformation: evolution of microstructure, phase transformation and hardness in immiscible magnesium-based systems, Mater. Sci. Eng. A 701 (2017) 158-166. https://doi.org/10.1016/j.msea.2017.06.076
[19] J.G. Sevillano, Dynamic steady state by unlimited unidirectional plastic deformation of crystalline materials deforming by dislocation glide at low to moderate temperatures, Metals 10 (2020) 66. https://doi.org/10.3390/met10010066
[20] A.P. Zhilyae, T.G. Langdon, Using high-pressure torsion for metal processing: fundamentals and applications, Prog. Mater. Sci. 53 (2008) 893-979. https://doi.org/10.1016/j.pmatsci.2008.03.002
[21] K. Edalati, Z. Horita, Scaling-up of high pressure torsion using ring shape, Mater. Trans. 50 (2009) 92-95. https://doi.org/10.2320/matertrans.MD200822
[22] K. Edalati, Z. Horita, Y. Mine, High-pressure torsion of hafnium, Mater. Sci. Eng. A 527 (2010) 2136-2141. https://doi.org/10.1016/j.msea.2009.11.060
[23] S. Lee, K. Edalati, Z. Horita, Microstructures and mechanical properties of pure V and Mo processed by high-pressure torsion, Mater. Trans. 51 (2010) 1072-1079. https://doi.org/10.2320/matertrans.M2009375
[24] L. Chen, L. Ping, T. Ye, L. Lingfeng, X. Kemin, Z. Meng, Observations on the ductility and thermostability of tungsten processed from micropowder by improved high-pressure torsion, Rare Met. Mater. Eng. 45 (2016) 3089-3094. https://doi.org/10.1016/S1875-5372(17)30059-0
[25] K. Edalati, Y. Yokoyama, Z. Horita, High-pressure torsion of machining chips and bulk discs of amorphous Zr50Cu30Al10Ni10, Mater. Trans. 51 (2010) 23-26. https://doi.org/10.2320/matertrans.MB200914
[26] Y.B. Wang, D.D. Qu, X.H. Wang, Y. Cao, X.Z. Liao, M. Kawasaki, S.P. Ringer, Z.W. Shan, T.G. Langdon, J. Shen, Introducing a strain-hardening capability to improve the ductility of bulk metallic glasses via severe plastic deformation, Acta Mater. 60 (2012) 253-260. https://doi.org/10.1016/j.actamat.2011.09.026
[27] Á. Révész, Z. Kovács, Severe plastic deformation of amorphous alloys, Mater. Trans. 60 (2019) 1283-1293. https://doi.org/10.2320/matertrans.MF201917
[28] V.D. Blank, M.Y. Popov, B.A. Kulnitskiy, The effect of severe plastic deformations on phase transitions and structure of solids, Mater. Trans. 60 (2019) 1500-1505. https://doi.org/10.2320/matertrans.MF201942
[29] Y. Ikoma, K. Hayano, K. Edalati, K. Saito, Q. Guo, Z. Horita, Phase transformation and nanograin refinement of silicon by processing through high-pressure torsion, Appl. Phys. Lett. 101 (2012) 121908. https://doi.org/10.1063/1.4754574
[30] K. Edalati, Z. Horita, Correlations between hardness and atomic bond parameters of pure metals and semi-metals after processing by high-pressure torsion, Scr. Mater. 64 (2011) 161-164. https://doi.org/10.1016/j.scriptamat.2010.09.034
[31] Y. Ikoma, Severe plastic deformation of semiconductor materials using high-pressure torsion, Mater. Trans. 60 (2019) 1168-1176. https://doi.org/10.2320/matertrans.MF201907
[32] H. Razavi-Khosroshahi, K. Edalati, M. Arita, Z. Horita, M. Fuji, Plastic strain and grain size effect on high-pressure phase transformations in nanostructured TiO2 ceramics, Scr. Mater. 124 (2016) 59-62. https://doi.org/10.1016/j.scriptamat.2016.06.022
[33] Q. Wang, K. Edalati, Y. Koganemaru, S. Nakamura, M. Watanabe, T. Ishihara, Z. Horita, Photocatalytic hydrogen generation on low-bandgap black zirconia (ZrO2) produced by high-pressure torsion, J. Mater. Chem. A 8 (2020) 3643-3650. https://doi.org/10.1039/C9TA11839J
[34] K. Edalati, M. Arimura, Y. Ikoma, T. Daio, M. Miyata, D.J. Smith, Z. Horita, Plastic deformation of BaTiO3 ceramics by high-pressure torsion and changes in phase transformations, optical and dielectric properties, Mater. Res. Lett. 3 (2015) 216-221. https://doi.org/10.1080/21663831.2015.1065454
[35] J.Y. Huang, Y.T. Zhu, X.Z. Liao, R.Z. Valiev, Amorphization of TiNi induced by high-pressure torsion, Phil. Mag. Lett. 84 (2004) 183-190. https://doi.org/10.1080/09500830310001657353
[36] C. Gammer, C. Mangler, H.P. Karnthaler, C. Rentenberger, Growth of nanosized chemically ordered domains in intermetallic FeAl made nanocrystalline by severe plastic deformation, Scr. Mater. 65 (2011) 57-60. https://doi.org/10.1016/j.scriptamat.2011.03.002
[37] D.G. Morris, M.A. Muñoz-Morris, Microstructural refinement in alloys and intermetallics by severe plastic deformation, J. Alloys. Compd. 536 (2012) S180-S185. https://doi.org/10.1016/j.jallcom.2011.10.069
[38] A. Kilmametov, R. Kulagin, A. Mazilkin, S. Seils, T. Boll, M. Heilmaier, H. Hahn, High-pressure torsion driven mechanical alloying of CoCrFeMnNi high entropy alloy, Scr. Mater. 158 (2019) 29-33. https://doi.org/10.1016/j.scriptamat.2018.08.031
[39] J. Gubicza, A. Heczel, M. Kawasaki, J.K. Han, Y. Zhao, Y. Xue, S. Huang, J.L. Lábár, Evolution of microstructure and hardness in Hf25Nb25Ti25Zr25 high-entropy alloy during high-pressure torsion, J. Alloys Compd. 788 (2019) 318-328. https://doi.org/10.1016/j.jallcom.2019.02.220
[40] W. Skrotzki, A. Pukenas, E. Odor, B. Joni, T. Ungar, B. Völker, A. Hohenwarter, R. Pippan, E.P. George, Microstructure, texture, and strength development during high-pressure torsion of CrMnFeCoNi high-entropy alloy, Crystals 10 (2020) 336. https://doi.org/10.3390/cryst10040336
[41] P. Edalati, R. Floriano, Y. Tang, A. Mohammadi, K. Danielle Pereira, A. Ducati Luchessi, K. Edalati, Ultrahigh hardness and biocompatibility of high-entropy alloy TiAlFeCoNi processed by high-pressure torsion, Mater. Sci. Eng. C 112 (2020) 110908. https://doi.org/10.1016/j.msec.2020.110908
[42] P. Edalati, A. Mohammadi, M. Ketabchi, K. Edalati, Ultrahigh hardness in nanostructured dual-phase high-entropy alloy AlCrFeCoNiNb developed by high-pressure torsion, J. Alloys Compd. 884 (2021) 161101. https://doi.org/10.1016/j.jallcom.2021.161101
[43] P. Edalati, A. Mohammadi, M. Ketabchi, K. Edalati, Microstructure and microhardness of dual-phase high-entropy alloy by high-pressure torsion: twins and stacking faults in FCC and dislocations in BCC, J. Alloys Compd. 894 (2022) 162413. https://doi.org/10.1016/j.jallcom.2021.162413
[44] A.P. Zhilyaev, G. Ringot, Y. Huang, J.M. Cabrera, T.G. Langdon, Mechanical behavior and microstructure properties of titanium powder consolidated by high-pressure torsion, Mater. Sci. Eng. A 688 (2017) 498-504. https://doi.org/10.1016/j.msea.2017.02.032
[45] K. Edalati, Z. Horita, H. Fujiwara, K. Ameyama, Cold consolidation of ball-milled titanium powders using high-pressure torsion, Metall. Mater. Trans. A 41 (2010) 3308-3317. https://doi.org/10.1007/s11661-010-0400-6
[46] S. Panda, J.J. Fundenberger, Y. Zhao, J. Zou, L.S. Toth, T. Grosdidier, Effect of initial powder type on the hydrogen storage properties of high-pressure torsion consolidated Mg, Int. J. Hydrog. Energy 42 (2017) 22438-22448. https://doi.org/10.1016/j.ijhydene.2017.05.097
[47] R.B. Figueiredo, P.H.R. Pereira, M.T.P. Aguilar, P.R. Cetlin, T.G. Langdon, Using finite element modeling to examine the temperature distribution in quasi-constrained high-pressure torsion. Acta Mater. 60 (2012) 3190-3198. https://doi.org/10.1016/j.actamat.2012.02.027
[48] K. Edalati, Y. Hashiguchi, P.H.R. Pereira, Z. Horita, T.G. Langdon, Effect of temperature rise on microstructural evolution during high-pressure torsion, Mater. Sci. Eng. A 714 (2018) 167-171. https://doi.org/10.1016/j.msea.2017.12.095
[49] K. Edalati, S. Toh, M. Arita, M. Watanabe, Z. Horita, High-pressure torsion of pure cobalt: hcp-fcc phase transformations and twinning during severe plastic deformation, Appl. Phys. Lett. 102 (2013) 181902. https://doi.org/10.1063/1.4804273
[50] V.I. Levita,: High-pressure phase transformations under severe plastic deformation by torsion in rotational anvils, Mater. Trans. 60 (2019) 1294-1301. https://doi.org/10.2320/matertrans.MF201923
[51] A. Mazilkin, B. Straumal, A. Kilmametov, P. Straumal, B. Baretzky, Phase transformations induced by severe plastic deformation, Mater. Trans. 60 (2019) 1489-1499. https://doi.org/10.2320/matertrans.MF201938
[52] X. Sauvage, A. Duchaussoy, G. Zaher, Strain induced segregations in severely deformed materials, Mater. Trans. 60 (2019) 1151-1158. https://doi.org/10.2320/matertrans.MF201919
[53] J. Gubicza, Lattice defects and their influence on the mechanical properties of bulk materials processed by severe plastic deformation, Mater. Trans. 60 (2019) 1230-1242. https://doi.org/10.2320/matertrans.MF201909
[54] J. Čížek, M. Janeček, T. Vlasák, B. Smola, O. Melikhova, R.K. Islamgaliev, S.V. Dobatkin, The development of vacancies during severe plastic deformation, Mater. Trans. 60 (2019) 1533-1542. https://doi.org/10.2320/matertrans.MF201937
[55] G. Wilde, S. Divinski, Grain boundaries and diffusion phenomena in severely deformed materials, Mater. Trans. 60 (2019) 1302-1315. https://doi.org/10.2320/matertrans.MF201934
[56] A. Bachmaier, R. Pippan, High-pressure torsion deformation induced phase transformations and formations: new material combinations and advanced properties, Mater. Trans. 60 (2019) 1256-1269. https://doi.org/10.2320/matertrans.MF201930
[57] J.K. Han, J.I. Jang, T.G. Langdon, M. Kawasaki, Bulk-state reactions and improving the mechanical properties of metals through high-pressure torsion, Mater. Trans. 60 (2019) 1131-1138. https://doi.org/10.2320/matertrans.MF201908
[58] K. Edalati, E. Akiba, Z. Horita, High-pressure torsion for new hydrogen storage materials, Sci. Technol. Adv. Mater. 19 (2018) 185-193. https://doi.org/10.1080/14686996.2018.1435131
[59] S. Akrami, P. Edalati, M. Fuji, K. Edalati, High-entropy ceramics: review of principles, production and applications, Mater. Sci. Eng. R 146 (2021) 100644. https://doi.org/10.1016/j.mser.2021.100644
[60] K. Edalati, Superfunctional materials by ultra-severe plastic deformation, Materials 16 (2023) 587. https://doi.org/10.3390/ma16020587
[61] H. Emami, K. Edalati, A. Staykov, T. Hongo, H. Iwaoka, Z. Horita, E. Akiba, Solid-state reactions and hydrogen storage in magnesium mixed with various elements by high-pressure torsion: experiments and first-principles calculations, RCS Adv. 6 (2016) 11665-11674. https://doi.org/10.1039/C5RA23728A
[62] K. Edalati, H. Emami, A. Staykov, D.J. Smith, E. Akiba, Z. Horita, Formation of metastable phases in magnesium-titanium system by high-pressure torsion and their hydrogen storage performance, Acta Mater. 50 (2015) 150-156. https://doi.org/10.1016/j.actamat.2015.07.060
[63] K. Edalati, H. Emami, Y. Ikeda, H. Iwaoka, I. Tanaka, E. Akiba, Z. Horita, New nanostructured phases with reversible hydrogen storage capability in immiscible magnesium-zirconium system produced by high-pressure torsion, Acta Mater. 108 (2016) 293-303. https://doi.org/10.1016/j.actamat.2016.02.026
[64] E.I. Lopez-Gomez, K. Edalati, D.D. Coimbroo, F.J. Antiqueira, G. Zepon, J.M. Cubero-Sesin, W.J. Botta, FCC phase formation in immiscible Mg-Hf (magnesium-hafnium) system by high-pressure torsion, AIP Adv. 10 (2020) 055222. https://doi.org/10.1063/5.0009456
[65] K. Fujiwara, R. Uehiro, K. Edalati, H.W. Li, R. Floriano, E. Akiba, Z. Horita, New Mg-V-Cr BCC alloys synthesized by high-pressure torsion and ball milling, Mater. Trans. 59 (2018) 741-746. https://doi.org/10.2320/matertrans.M2018001
[66] K. Edalati, R. Uehiro, Y. Ikeda, H.W. Li, H. Emami, Y. Filinchuk, M. Arita, X. Sauvage, I. Tanaka, E. Akiba, Z. Horita, Design and synthesis of a magnesium alloy for room temperature hydrogen storage, Acta Mater. 149 (2018) 88-96. https://doi.org/10.1016/j.actamat.2018.02.033
[67] M.O. de Marco, Y. Li, H.W. Li, K. Edalati, R. Floriano, Mechanical synthesis and hydrogen storage characterization of MgVCr and MgVTiCrFe high-entropy alloy, Adv. Eng. Mater. 22 (2020) 1901079. https://doi.org/10.1002/adem.201901079
[68] K. Kitabayashi, K. Edalati, H.W. Li, E. Akiba, Z. Horita, Phase transformations in MgH2-TiH2 hydrogen storage system by high-pressure torsion process, Adv. Eng. Mater. 22 (2020) 1900027. https://doi.org/10.1002/adem.201900027
[69] X. Sauvage, F. Cuvilly, A. Russell, K. Edalati, Understanding the role of Ca segregation on thermal stability, electrical resistivity and mechanical strength of nanostructured aluminum, Mater. Sci. Eng. A 798 (2020) 140108. https://doi.org/10.1016/j.msea.2020.140108
[70] A. Duchaussoy, X. Sauvage, K. Edalati, Z. Horita, G. Renou, A. Deschamps, F. De Geuser, Structure and mechanical behavior of ultrafine-grained aluminum-iron alloy stabilized by nanoscaled intermetallic particles, Acta Mater. 167 (2019) 89-102. https://doi.org/10.1016/j.actamat.2019.01.027
[71] K. Edalati, S. Toh, M. Watanabe, Z. Horita, In-situ production of bulk intermetallic-based nanocompsites and nanostructured intermetallics by high-pressure torsion, Scr. Mater. 66 (2012) 386-389. https://doi.org/10.1016/j.scriptamat.2011.11.039
[72] A. Alhamidi, K. Edalati, Z. Horita, Production of nanograined intermetallics using high-pressure torsion, Mater. Res. 16 (2013) 672-678. https://doi.org/10.1590/S1516-14392013005000057
[73] A. Alhamidi, K. Edalati, Z. Horita, Effect of temperature on solid-state formation of bulk nanograined intermetallics during high-pressure torsion, Philos. Mag. 94 (2014) 876-887. https://doi.org/10.1080/14786435.2013.868945
[74] K. Oh-ishi, K. Edalati, H.S. Kim, K. Hono, Z. Horita, High-pressure torsion for enhanced atomic diffusion and promoting solid-state reactions in aluminum-copper system, Acta Mater. 61 (2013) 3482-3489. https://doi.org/10.1016/j.actamat.2013.02.042
[75] A. Mohammadi, N.A. Enikeev, M.Y. Murashkin, M. Arita, K. Edalati, Developing age-hardenable Al-Zr alloy by ultra-severe plastic deformation: significance of supersaturation, segregation and precipitation on hardening and electrical conductivity, Acta Mater. 203 (2021) 116503. https://doi.org/10.1016/j.actamat.2020.116503
[76] A. Mohammadi, N.A. Enikeev, M.Y. Murashkin, M. Arita, K. Edalati, Examination of inverse Hall-Petch relation in nanostructured aluminum alloys by ultra-severe plastic deformation, J. Mater. Sci. Technol. 91 (2021) 78-89. https://doi.org/10.1016/j.jmst.2021.01.096
[77] K. Edalati, S. Toh, H. Iwaoka, M. Watanabe, Z. Horita, D. Kashioka, K. Kishida, H. Inui, Ultrahigh strength and high plasticity in TiAl intermetallics with bimodal grain structure and nanotwins, Scr. Mater. 67 (2012) 814-817. https://doi.org/10.1016/j.scriptamat.2012.07.030
[78] K. Edalati, H. Shao, H. Emami, H. Iwaoka, Z. Horita, E. Akiba, Activation of titanium-vanadium alloy for hydrogen storage by introduction of nanograins and edge dislocations using high-pressure torsion, Int. J. Hydrog. Energy 41 (2016) 8917-8924. https://doi.org/10.1016/j.ijhydene.2016.03.146
[79] A. Campos-Quirós, J.M. Cubero-Sesín, K. Edalati, Synthesis of nanostructured biomaterials by high-pressure torsion: effect of niobium content on microstructure and mechanical properties of Ti-Nb alloys, Mater. Sci. Eng. A 795 (2020) 139972. https://doi.org/10.1016/j.msea.2020.139972
[80] J. González-Masís, J.M. Cubero-Sesin, A. Campos-Quirós, K. Edalati, Synthesis of biocompatible high-entropy alloy TiNbZrTaHf by high-pressure torsion, Mater. Sci. Eng. A 825 (2021) 141869. https://doi.org/10.1016/j.msea.2021.141869
[81] P. Edalati, Q. Wang, H. Razavi-Khosroshahi, M. Fuji, T. Ishihara, K. Edalati, Photocatalytic hydrogen evolution on a high-entropy oxide, J. Mater. Chem. A 8 (2020) 3814-3821. https://doi.org/10.1039/C9TA12846H
[82] S. Akrami, Y. Murakami, M. Watanabe, T. Ishihara, M. Arita, M. Fuji, K. Edalati, Defective high-entropy oxide photocatalyst with high activity for CO2 conversion, Appl. Catal. B 303 (2022) 120896. https://doi.org/10.1016/j.apcatb.2021.120896
[83] P. Edalati, X.F. Shen, M. Watanabe, T. Ishihara, M. Arita, M. Fuji, K. Edalati, High-entropy oxynitride as low-bandgap and stable photocatalyst for hydrogen production, J. Mater. Chem. A 9 (2021) 15076-15086. https://doi.org/10.1039/D1TA03861C
[84] S. Akrami, P. Edalati, Y. Shundo, M. Watanabe, T. Ishihara, M. Fuji, K. Edalati, Significant CO2 photoreduction on a high-entropy oxynitride, Chem. Eng. J. 449 (2022) 137800. https://doi.org/10.1016/j.cej.2022.137800
[85] P. Edalati, Y. Itagoe, H. Ishihara, T. Ishihara, H. Emami, M. Arita, M. Fuji, K. Edalati, Visible-light photocatalytic oxygen production on a high-entropy oxide with multiple-heterojunction introduction, J. Photochem. Photobiol. A 433 (2022) 114167. https://doi.org/10.1016/j.jphotochem.2022.114167
[86] S. Lee, K. Edalati, H. Iwaoka, Z. Horita, T. Ohtsuki, T. Ohkochi, M. Kotsugi, T. Kojima, M. Mizuguchi, K. Takanashi, Formation of FeNi with L10-ordered structure using high-pressure torsion, Philos. Mag. Lett. 94 (2014) 639-646. https://doi.org/10.1080/09500839.2014.955546
[87] K. Edalati, T. Daio, Z. Horita, K. Kishida, H. Inui, Evolution of lattice defects, disordered/ordered phase transformations and mechanical properties in Ni-Al-Ti intermetallics by high-pressure torsion, J. Alloys Compd. 563 (2013) 221-228. https://doi.org/10.1016/j.jallcom.2013.02.128
[88] K. Edalati, T. Daio, S. Lee, Z. Horita, T. Nishizaki, T. Akune, T. Nojima, T. Sasaki, High strength and superconductivity in nanostructured niobium-titanium alloy by high-pressure torsion and annealing: significance of elemental decomposition and supersaturation, Acta Mater. 80 (2014) 149-158. https://doi.org/10.1016/j.actamat.2014.07.065
[89] J. Cubicza, N.Q. Chinh, J.L. Labar, Z. Hegedus, T.G. Langdon, Principles of self-annealing in silver processed by equal-channel angular pressing: the significance of a very low stacking fault energy, Mater. Sci. Eng. A 527 (2010) 752-760. https://doi.org/10.1016/j.msea.2009.08.071
[90] V.V. Popov, E.N. Popova, D.D. Kuznetsov, A.V. Stolbovskii, V.P. Pilyugin, Thermal stability of nickel structure obtained by high-pressure torsion in liquid nitrogen, Phys. Met. Metallogr. 115 (2014) 682-691. https://doi.org/10.1134/S0031918X14070060
[91] Y. Huang, S. Sabbaghianrad, A.I. Almazrouee, K.J. Al-Fadhalah, S.N. Alhajeri, T.G. Langdon, The significance of self-annealing at room temperature in high purity copper processed by high-pressure torsion, Mater. Sci. Eng. A 656 (2016) 55-66. https://doi.org/10.1016/j.msea.2016.01.027
[92] J.A. Muñoz, O.F. Higuera, A.H. Expósito, A. Boulaajaj, R.E. Bolmaro, F.D. Dumitru, P.R. Calvillo, A.M. Jorge Jr, J.M. Cabrera, Thermal stability of ARMCO iron processed by ECAP, Int. J. Adv. Manufact. Technol. 98 (2018) 2917-2932. https://doi.org/10.1007/s00170-018-2353-7
[93] H. Gleiter, Nanocrystalline materials, Prog. Mater. Sci. 33 (1989) 223-315. https://doi.org/10.1016/0079-6425(89)90001-7
[94] J.A. Haber, J.L. Crane, W.E. Buhro, C.A. Frey, S.M.L. Sastry, J.J. Balbach, M.S. Conradi, Chemical synthesis of nanocrystalline titanium and nickel aluminides from the metal chlorides and lithium aluminum hydride, Adv. Mater. 8 (1996) 163-166. https://doi.org/10.1002/adma.19960080215
[95] Y.B. Pithawalla, M.S. El-Shall, S.C. Deevi, Synthesis and characterization of nanocrystalline iron aluminide particles, Intermetallics 8 (2000) 1225-1231. https://doi.org/10.1016/S0966-9795(00)00076-5
[96] S. Suryanarayana, Mechanical alloying and milling, Prog. Mater. Sci. 46 (2001) 1-184. https://doi.org/10.1016/S0079-6425(99)00010-9
[97] M. Long, H.J. Rack, Titanium alloys in total joint replacement – a materials science perspective, Biomaterials. 19 (1998) 1621-1639. https://doi.org/10.1016/S0142-9612(97)00146-4
[98] R. Valiev, I.P. Semenova, E. Jakushina, V.V. Latysh, H.J. Rack, T.C. Lowe, J. Petruželka, L. Dluhoš, D. Hrušák, J. Sochová, Nanostructured SPD processed titanium for medical implants, Mater. Sci. Forum 584-586 (2008) 49-54. https://doi.org/10.4028/www.scientific.net/MSF.584-586.49
[99] Y. Estrin, H.E. Kim, R. Lapovok, H.P. Ng, J.H. Jo, Mechanical strength and biocompatibility of ultrafine-grained commercial purity titanium, BioMed Res. Int. 2013 (2013) 914764. https://doi.org/10.1155/2013/914764
[100] A.P. Zhilyaev, Y. Huang, J.M. Cabrera, T.G. Langdon, Influence of inhomogeneity on mechanical properties of commercially pure titanium processed by HPT, Defect Diffus. Forum 385 (2018) 284-289. https://doi.org/10.4028/www.scientific.net/DDF.385.284
[101] T.C. Lowe, R.Z. Valiev, X. Li, B.R. Ewing, Commercialization of bulk nanostructured metals and alloys, MRS Bull. 46 (2021) 265-272. https://doi.org/10.1557/s43577-021-00060-0
[102] C. Meingast, D.C. Larbalestier, Quantitative description of a very high critical current density Nb‐Ti superconductor during its final optimization strain. II. Flux pinning mechanisms, J. Appl. Phys. 66 (1989) 5971-5983. https://doi.org/10.1063/1.343625
[103] L.D. Cooley, P.D. Jablonski, P.J. Lee, D.C. Larbalestier, Strongly enhanced critical current density in Nb 47 wt.% Ti having a highly aligned microstructure, Appl. Phys. Lett. 58 (1991) 2984-2986. https://doi.org/10.1063/1.104689
[104] R.W. Heussner, P.D. Jablonski, P.J. Lee, D.C. Larbalestier, Properties of rod-based artificial pinning center Nb-Ti superconductors, IEEE Trans. Appl. Supercon. 5 (1995) 1705-1708. https://doi.org/10.1109/77.402905
[105] V.A. Beloshenko, V.V. Chishko, Deformation-heat treatment of Nb-Ti superconductors using severe plastic deformation methods, Phys. Met. Metallogr. 114 (2013) 992-1002. https://doi.org/10.1134/S0031918X13090032
[106] I.P. Jain, C. Lal, A. Jain, Hydrogen storage in Mg: a most promising material, Int. J. Hydrogen Energy 35 (2010) 5133-5144. https://doi.org/10.1016/j.ijhydene.2009.08.088
[107] Á. Révész, M. Gajdics, High-pressure torsion of non-equilibrium hydrogen storage materials: a review, Energies 14 (2021) 819. https://doi.org/10.3390/en14040819
[108] T.G. Langdon, Seventy-five years of superplasticity: historic developments and new opportunities, J. Mater. Sci. 44 (2009) 5998-6010. https://doi.org/10.1007/s10853-009-3780-5
[109] R.Z. Valiev, M.Y. Murashkin, A. Kilmametov, B. Straumal, N.Q. Chinh, T.G. Langdon, Unusual super-ductility at room temperature in an ultrafine-grained aluminum alloy, J. Mater. Sci. 45 (2010) 4718-4724. https://doi.org/10.1007/s10853-010-4588-z
[110] M. Kawasaki, T.G. Langdon, The contribution of severe plastic deformation to research on superplasticity, Mater. Trans. 60 (2019) 1123-1130. https://doi.org/10.2320/matertrans.MF201915
[111] M. Demirtas, G. Purcek, Room temperature superplaticity in fine/ultrafine grained materials subjected to severe plastic deformation, Mater. Trans. 60 (2019) 1159-1167. https://doi.org/10.2320/matertrans.MF201922
[112] R. Wu, Y. Yan, G. Wang, L.E. Murr, W. Han, Z. Zhang, M. Zhang, Recent progress in magnesium-lithium alloys, Int. Mater. Rev. 60 (2015) 65-100. https://doi.org/10.1179/1743280414Y.0000000044
[113] A. Alhamidi, K. Edalati, Z. Horita, S. Hirosawa, K. Matsuda, D. Terada, Softening by severe plastic deformation and hardening by annealing of aluminum-zinc alloy: significance of elemental and spinodal decompositions, Mater. Sci. Eng. A 610 (2014) 17-27. https://doi.org/10.1016/j.msea.2014.05.026