Improved stochastic dissimilar diffusion bonding model with experimental validation
Bryan Ferguson, Neha Kulkarni, D.G. Sanders, Eric Bol, M. Ramulu
download PDFAbstract. Diffusion bonding is a solid-state welding operation that has seen wide spread use in the aerospace industry, especially in combination with superplastic forming. It combines two relatively flat, clean surfaces at high temperature to create a near flawless weld over a large surface area. Modelling of diffusion bonding has been challenging due in part because of the larger variations in voids formed from the mating surfaces. This paper attempts to compensate for that inadequacy by implementing a stochastic diffusion bonding model based with theoretical voids formed from interacting surfaces. The model uses a statistical version of Pilling’s model in combination with surface roughness based initial conditions that estimates the possibilities of voids formed. The results of the model are compared with experimental results for three different alloys at a variety of process conditions along with presenting an investigation of the mechanics of the model for future improvements.
Keywords
Diffusion Bonding, Voids, Superplastic Forming, Statistical Modeling
Published online , 17 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: Bryan Ferguson, Neha Kulkarni, D.G. Sanders, Eric Bol, M. Ramulu, Improved stochastic dissimilar diffusion bonding model with experimental validation, Materials Research Proceedings, Vol. 32, pp 338-354, 2023
DOI: https://doi.org/10.21741/9781644902615-39
The article was published as article 39 of the book Superplasticity in Advanced Materials
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] D. G. Sanders and M. Ramulu, “Examination of superplastic forming combined with diffusion bonding for titanium: Perspective from experience,” J. Mater. Eng. Perform., vol. 13, no. 6, pp. 744-752, Dec. 2004. https://doi.org/10.1361/10599490421574
[2] A. Hill and E. Wallach, “Modelling solid-state diffusion bonding,” Acta Metall., vol. 37, no. 9, pp. 2425-2437, 1989. https://doi.org/10.1016/0001-6160(89)90040-0
[3] M. F. Islam, J. Pilling, and N. Ridley, “Effect of surface finish and sheet thickness on isostatic diffusion bonding of superplastic Ti-6Al-4V,” Mater. Sci. Technol., vol. 13, no. 12, pp. 1045-1050, Dec. 1997. https://doi.org/10.1179/mst.1997.13.12.1045
[4] H. Somekawa and K. Higashi, “The optimal surface roughness condition on diffusion bonding,” Mater. Trans., vol. 44, no. 8, pp. 1640-1643, 2003. https://doi.org/10.2320/matertrans.44.1640
[5] A. Wang, O. Ohashi, and K. Ueno, “Effect of surface asperity on diffusion bonding,” Mater. Trans., vol. 47, no. 1, pp. 179-184, 2006. https://doi.org/10.2320/matertrans.47.179
[6] C. H. Hamilton, “Pressure requirements for diffusion bonding titanium,” Titan. Sci. Technol., pp. 625-648, 1973. https://doi.org/10.1007/978-1-4757-1346-6_46
[7] B. Derby and E. R. Wallach, “Diffusion bonding: development of theoretical model,” Met. Sci., vol. 18, no. 9, pp. 427-431, 1984. https://doi.org/10.1179/030634584790419809
[8] B. Derby and E. R. Wallach, “Diffusion bonds in copper,” J. Mater. Sci., vol. 19, no. 10, pp. 3140-3148, 1984. https://doi.org/10.1007/BF00549797
[9] B. Derby and E. R. Wallach, “Theoretical model for diffusion bonding,” Met. Sci., vol. 16, no. 1, pp. 49-56, 1982. https://doi.org/10.1179/030634582790427028
[10] Z. X. Guo and N. Ridley, “Modelling of diffusion bonding of metals,” Mater. Sci. Technol., vol. 3, no. 11, pp. 945-953, 1987. https://doi.org/10.1179/mst.1987.3.11.945
[11] Y. Takahashi and K. Inoue, “Recent void shrinkage models and their applicability to diffusion bonding,” Mater. Sci. Technol., vol. 8, no. 11, pp. 953-964, 1992. https://doi.org/10.1179/mst.1992.8.11.953
[12] J. Pilling, D. W. Livesey, J. B. Hawkyard, and N. Ridley, “Solid state bonding in superplastic Ti-6Al-4V,” Met. Sci., vol. 18, no. 3, pp. 117-122, 1984. https://doi.org/10.1179/msc.1984.18.3.117
[13] J. Pilling, “The kinetics of isostatic diffusion bonding in superplastic materials,” Mater. Sci. Eng., vol. 100, pp. 137-144, 1988. https://doi.org/10.1016/0025-5416(88)90249-2
[14] M. T. Salehi, J. Pilling, N. Ridley, and D. L. Hamilton, “Isostatic diffusion bonding of superplastic Ti-6Al-4V,” Mater. Sci. Eng. A, vol. 150, no. 1, pp. 1-6, 1992. https://doi.org/10.1016/0921-5093(90)90002-K
[15] N. Orhan, M. Aksoy, and M. Eroglu, “A new model for diffusion bonding and its application to duplex alloys,” Mater. Sci. Eng. A, vol. 271, no. 1, pp. 458-468, 1999. https://doi.org/10.1016/S0921-5093(99)00315-9
[16] R. Ma, M. Li, H. Li, and W. Yu, “Modeling of void closure in diffusion bonding process based on dynamic conditions,” Sci. China Technol. Sci., vol. 55, no. 9, pp. 2420-2431, Sep. 2012. https://doi.org/10.1007/s11431-012-4927-1
[17] S.-X. Li, S.-T. Tu, and F.-Z. Xuan, “A probabilistic model for prediction of bonding time in diffusion bonding,” Mater. Sci. Eng. A, vol. 407, no. 1-2, pp. 250-255, Oct. 2005. https://doi.org/10.1016/j.msea.2005.07.003
[18] N. Kulkarni, M. Ramulu, and D. G. Sanders, “Modeling of Diffusion Bonding Time in Dissimilar Titanium Alloys: Preliminary Results,” J. Manuf. Sci. Eng., vol. 138, no. 12, p. 121010, 2016. https://doi.org/10.1115/1.4034133
[19] F. A. Calvo, J. G. De Salazar, A. Urena, J. G. Carrion, and F. Perosanz, “Diffusion bonding of Ti-6Al-4V alloy at low temperature: metallurgical aspects,” J. Mater. Sci., vol. 27, no. 2, pp. 391-398, 1992. https://doi.org/10.1007/BF00543928
[20] P. P. Gudipati and Y. Kosaka, “Diffusion Bonding of Similar and Dissimilar Titanium Alloys,” presented at the Proceedings of the 13th World Conference on Titanium, 2016, pp. 1631-1636. https://doi.org/10.1002/9781119296126.ch273
[21] S. Jadhav, A. Powar, S. Patil, A. Supare, B. Farane, and R. Singh, “Effect of volume fraction of alpha and transformed beta on the high cycle fatigue properties of bimodal Ti6Al4V alloy,” IOP Conf. Ser. Mater. Sci. Eng., vol. 201, p. 012035, May 2017. https://doi.org/10.1088/1757-899X/201/1/012035
[22] Y. Kosaka and P. GUDIPATI, “Method for the manufacture of alpha-beta ti-al-v-mo-fe alloy sheets,” EP2721187 A1, 23-Apr-2014.
[23] M. E. Kassner, Y. Kosaka, and J. S. Hall, “Low-cycle dwell-time fatigue in Ti-6242,” Metall. Mater. Trans. A, vol. 30, no. 9, pp. 2383-2389, 1999. https://doi.org/10.1007/s11661-999-0246-y
[24] P. M. Sargent and M. F. Ashby, “Deformation maps for titanium and zirconium,” Scr. Metall., vol. 16, no. 12, pp. 1415-1422, 1982. https://doi.org/10.1016/0036-9748(82)90439-2
[25] L. Huang, Y. Cui, H. Chang, H. Zhong, J. Li, and L. Zhou, “Assessment of Atomic Mobilities for bcc Phase of Ti-Al-V System,” J. Phase Equilibria Diffus., vol. 31, no. 2, pp. 135-143, Apr. 2010. https://doi.org/10.1007/s11669-009-9641-8
[26] Y. Liu, Y. Ge, D. Yu, T. Pan, and L. Zhang, “Assessment of the diffusional mobilities in bcc Ti-V alloys,” J. Alloys Compd., vol. 470, no. 1, pp. 176-182, Feb. 2009. https://doi.org/10.1016/j.jallcom.2008.02.111