Comparative studies of hyperbolic sine constitutive models for constant pressure superplastic tests

Comparative studies of hyperbolic sine constitutive models for constant pressure superplastic tests

Luis García-Barrachina, Antonio J. Gámez

download PDF

Abstract. The constant pressure free-inflation test is a very versatile and simple tool for analyzing different features of superplastic forming. In recent years, different methods have been proposed to measure constitutive parameters of the stress–strain relationship for the superplastic material, specifically the K and m parameters of the power law model. However, this law is restricted to be used in narrow strain-rate ranges, and poor results are obtained when applied in a broader spectrum. To overcome this problem, numerous constitutive models covering the full strain-rate range applicable in superplastic forming have been proposed historically, including the hyperbolic sine equation. However, there is no clear consensus on the type of hyperbolic sine function to use. Some authors include a sensitivity parameter while others do not. This article aims to study the characteristics of the hyperbolic sine constitutive model, checking which of the historically proposed models achieves better results in the test at free deformation and constant pressure.

Keywords
Modelling, Constitutive Parameters, Hyperbolic Sine Model, Free-Inflation Test

Published online , 10 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Luis García-Barrachina, Antonio J. Gámez, Comparative studies of hyperbolic sine constitutive models for constant pressure superplastic tests, Materials Research Proceedings, Vol. 32, pp 264-273, 2023

DOI: https://doi.org/10.21741/9781644902615-30

The article was published as article 30 of the book Superplasticity in Advanced Materials

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] I.C. And, R.S. Mishra, Materials Processing Handbook, Taylor & Francis Group, 2007.
[2] E. Alabort, D. Putman, R.C. Reed, Superplasticity in Ti-6Al-4V: Characterisation, modelling and applications, Acta Mater., 95 (2015) 428-442. https://doi.org/10.1016/j.actamat.2015.04.056
[3] T. Yasmeen, Z. Shao, L. Zhao, P. Gao, J. Lin, J. Jiang, Constitutive modeling for the simulation of the superplastic forming of TA15 titanium alloy, Int. J. Mech. Sci., 164 (2019). https://doi.org/10.1016/j.ijmecsci.2019.105178
[4] W. Zhou, J. Lin, D.S. Balint, T.A. Dean, Clarification of the effect of temperature and strain rate on workpiece deformation behaviour in metal forming processes, Int. J. Mach. Tools Manuf., 171 (2021) 103815. https://doi.org/10.1016/j.ijmachtools.2021.103815
[5] P.N. Comley, ASTM E2448-A Unified Test for Determining SPF Properties, J. Mater. Eng. Perform., 17 (2008) 183-186. https://doi.org/10.1007/s11665-007-9181-5
[6] G.C. Cornfield, R.H. Johnson, The forming of superplastic sheet metal, Int. J. Mech. Sci., 12 (1970) 479-490. https://doi.org/10.1016/0020-7403(70)90075-5
[7] L. García-Barrachina, D. Sorgente, L. Tricarico, A.J. Gámez, A method for estimating superplastic material parameters via free-inflation tests, J. Mater. Res. Technol., 11 (2021) 1387-1395. https://doi.org/10.1016/j.jmrt.2021.01.116
[8] N. Chandra, Constitutive behaviour of superplastic materials, Int. J. Non. Linear. Mech., 37 (2002) 461-484. https://doi.org/10.1016/S0020-7462(01)00021-X
[9] J. Lin, T.A. Dean, Modelling of microstructure evolution in hot forming using unified constitutive equations, J. Mater. Process. Technol., 167 (2005) 354-362. https://doi.org/10.1016/j.jmatprotec.2005.06.026
[10] A.J. Carpenter, A.R. Antoniswamy, J.T. Carter, L.G. Hector, E.M. Taleff, A mechanism-dependent material model for the effects of grain growth and anisotropy on plastic deformation of magnesium alloy AZ31 sheet at 450 C, Acta Mater., 68 (2014) 254-266. https://doi.org/10.1016/j.actamat.2014.01.043
[11] O. Majidi, M. Jahazi, N. Bombardier, A viscoplastic model based on a variable strain rate sensitivity index for superplastic sheet metals, Int. J. Mater. Form., 12 (2019) 693-702. https://doi.org/10.1007/s12289-018-1443-2
[12] C.M. Sellars, W.J. McTegart, On the mechanism of hot deformation, Acta Metall., 14 (1966) 1136-1138. https://doi.org/10.1016/0001-6160(66)90207-0
[13] H.D.R. Lin J., D. B.F., A new design of uniaxial testpiece with slit extensometer ridges for improved accuracy of strain measurement, Int. J. Mech. Sci., 35 (1993) 63-78. https://doi.org/10.1016/0020-7403(93)90065-3
[14] T.W. Kim, F.P.E. Dünne, Determination of superplastic constitutive equations and strain rate sensitivities for aerospace alloys, Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng., 211 (1997) 367-380. https://doi.org/10.1243/0954410971532730
[15] J. Lin, Selection of material models for predicting necking in superplastic forming, Int. J. Plast., 19 (2002) 469-481. https://doi.org/10.1016/S0749-6419(01)00059-6
[16] B. Zhang, D.J. Mynors, A. Mugarra, K. Ostolaza, Representing the superplasticity of Inconel 718, J. Mater. Process. Technol., 153-154 (2004) 694-698. https://doi.org/10.1016/j.jmatprotec.2004.04.138
[17] J. Bonet, A. Gil, R.D.R.D. Wood, R. Said, R. V Curtis, Simulating superplastic forming, Comput. Methods Appl. Mech. Eng., 195 (2006) 6580-6603. https://doi.org/10.1016/j.cma.2005.03.012
[18] J. Yang, J. Wu, Q. Zhang, R. Han, K. Wang, The simple hyperbolic-sine equation for superplastic deformation and parameters optimization, J. Mater. Res. Technol., 9 (2020) 10819-10829. https://doi.org/10.1016/j.jmrt.2020.07.076
[19] A.O. Mosleh, A.D. Kotov, A.A. Kishchik, O. V. Rofman, A. V. Mikhaylovskaya, Characterization of superplastic deformation behavior for a novel al-mg-fe-ni-zr-sc-based alloy: Arrhenius-based modeling and artificial neural network approach, Appl. Sci., 11 (2021) 1-18. https://doi.org/10.3390/app11052208
[20] D. Sorgente, G. Palumbo, L.D. Scintilla, L. Tricarico, Gas forming of an AZ31 magnesium alloy at elevated strain rates, Int. J. Adv. Manuf. Technol., 83 (2016) 861-872. https://doi.org/10.1007/s00170-015-7614-0
[21] The MathWorks Inc., MATLAB Version: 9901592791 (R2020b), (2020).
[22] L. García-Barrachina, A.J. Gámez, A forming time estimator of superplastic free bulge tests based on dimensional analysis, Int. J. Mater. Form., 14 (2021) 499-506. https://doi.org/10.1007/s12289-019-01527-x