In-situ neutron and synchrotron methods for the investigation of plastic deformation and annealing in metals
Klaus-Dieter Liss
download PDFAbstract. Following a crash course in neutron and synchrotron diffraction standards, applications are demonstrated on selected metallic systems, comprising the atomic order in titanium aluminide intermetallics at thermal and mechanical processing. High pressure torsion processed specimens show heterogeneous structure and order. Upon heating, their nanostructure evolves revealing regimes of recovery, recrystallization and grain growth, which can be exploited for engineering designated microstructures with enhanced physical and mechanical properties. Advanced analysis of two-dimensional diffractograms by synchrotron radiation allows to distinguish microstructure transformations as well as deformation mechanisms in thermo-mechanical processing. The methods are applicable to a wide range of materials and processes allowing to speed up materials development by orders of magnitude.
Keywords
Neutron Scattering, Synchrotron Radiation, Diffraction Theory, Reciprocal Space, Titanium Aluminides, High-Pressure Torsion, Phase Transformation, High-Temperature, In-Situ, Plastic Deformation, Thermo-Mechanical Processing, Dynamic Recrystallization
Published online , 16 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: Klaus-Dieter Liss, In-situ neutron and synchrotron methods for the investigation of plastic deformation and annealing in metals, Materials Research Proceedings, Vol. 32, pp 25-40, 2023
DOI: https://doi.org/10.21741/9781644902615-3
The article was published as article 3 of the book Superplasticity in Advanced Materials
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] Liss, K.-D.; Bartels, A.; Schreyer, A.; Clemens, H. High-Energy X-Rays: A Tool for Advanced Bulk Investigations in Materials Science and Physics. Textures Microstruct. 2003, 35, 219–252. https://doi.org/10.1080/07303300310001634952
[2] Liss, K.-D. Quantum Beam Science—Applications to Probe or Influence Matter and Materials. Quantum Beam Sci. 2017, 1, 1. https://doi.org/10.3390/qubs1010001.
[3] Sears, V.F. Scattering Lengths for Neutrons. In International Tables for Crystallography; Vol. C, Sec. 4.4.4, pp. 444–454.
[4] Thompson, A.; Lindau, I.; Attwood, D.; Liu, Y.; Gullikson, E.; Pianetta, P.; Howells, M.; Robinson, A.; Kim, K.-J.; Scofield, J.; et al. X-Ray Data Booklet; 3rd Edition.; Lawrence Berkeley National Laboratory: Berkeley, 2009;
[5] Steuwer, A.; Santisteban, J.R.; Turski, M.; Withers, P.J.; Buslaps, T. High-Resolution Strain Mapping in Bulk Samples Using Full-Profile Analysis of Energy Dispersive Synchrotron X-Ray Diffraction Data. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2005, 238, 200–204. https://doi.org/10.1016/j.nimb.2005.06.049
[6] Tapan Chatterji; Liss, K.-D.; Tschentscher, T. Anomalous Thermal Expansion Due to Magnetism in EuAs3 and MnS2. In ESRF Highlights 1996/1997; 1997; p. 19.
[7] Chatterji, T.; Liss, K.D.; Tschentscher, T.; Janossy, B.; Strempfer, J.; Bruckel, T. High-Energy Non-Resonant X-Ray Magnetic Scattering from EuAS(3). Solid State Commun. 2004, 131, 713–717. https://doi.org/10.1016/j.ssc.2004.06.026
[8] Hubbell, J.H.; Seltzer, S.M. Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients 1 KeV to 20 MeV for Elements Z = 1 to 92 and 48 Additional Substances of Dosimetric Interest. NIST 1995.
[9] Chen, G.; Liss, K.D.; Auchterlonie, G.; Tang, H.; Cao, P. Dehydrogenation and Sintering of TiH2: An In Situ Study. Metall. Mater. Trans. A 2017, 1–11. https://doi.org/10.1007/s11661-017-4043-8.
[10] Liss, K.-D.; Whitfield, R.E.; Xu, W.; Buslaps, T.; Yeoh, L.A.; Wu, X.; Zhang, D.; Xia, K. In Situ Synchrotron High-Energy X-Ray Diffraction Analysis on Phase Transformations in Ti-Al Alloys Processed by Equal-Channel Angular Pressing. J. Synchrotron Radiat. 2009, 16, 825–834. https://doi.org/10.1107/S090904950903711X
[11] Sears, V.F. Neutron Scattering Lengths and Cross Sections. Neutron News 1992, 3, 26–37. https://doi.org/10.1080/10448639208218770
[12] Li, X.; Bhattacharyya, D.; Jin, H.; Reid, M.; Dippenaar, R.; Yang, R.; Liss, K.-D. In-Situ Studies of TiAl Polysynthetically Twinned Crystals: Critical Fluctuations and Microstructural Evolution. J. Alloys Compd. 2019, 152454. https://doi.org/10.1016/j.jallcom.2019.152454
[13] Shechtman, D.; Blackburn, M.J.; Lipsitt, H.A. The Plastic Deformation of TiAl. Metall. Trans. 1974, 5, 1373–1381. https://doi.org/10.1007/BF02646623
[14] Kabra, S.; Yan, K.; Mayer, S.; Schmoelzer, T.; Reid, M.; Dippenaar, R.; Clemens, H.; Liss, K.-D. Phase Transition and Ordering Behavior of Ternary Ti-Al-Mo Alloys Using in-Situ Neutron Diffraction. Int. J. Mater. Res. 2011, 102, 697–702. https://doi.org/10.3139/146.110528
[15] Chladil, H.F.; Clemens, H.; Zickler, G.A.; Takeyama, M.; Kozeschnik, E.; Bartels, A.; Buslaps, T.; Gerling, R.; Kremmer, S.; Yeoh, L.; et al. Experimental Studies and Thermodynamic Simulation of Phase Transformations in High Nb Containing Gamma-TiAl Based Alloys. Int. J. Mater. Res. 2007, 98, 1131–1137. https://doi.org/10.3139/146.101569
[16] Xu, S.; Reid, M.; Lin, J.; Liang, Y.; Yang, L.; Zhang, J.; Liss, K.-D. The Crystal Structure and Transformations of the Omicron Phase Ο in the Ti-Al-Nb System and on the Ambiguity of Its Subvariants Ο1 and Ο2. Scr. Mater. 2022, 219, 114841. https://doi.org/10.1016/j.scriptamat.2022.114841
[17] Shull, R.D.; Cline, J.P. High Temperature X-Ray Diffractometry of Ti-Al Alloys. In Materials Chemistry at High Temperatures; Hastie, J.W., Ed.; Humana Press: Totowa, NJ, 1990; pp. 95–117 ISBN 978-1-4612-6781-2.
[18] Chladil, H.F.; Clemens, H.; Leitner, H.; Bartels, A.; Gerling, R.; Schimansky, F.-P.; Kremmer, S. Phase Transformations in High Niobium and Carbon Containing γ-TiAl Based Alloys. Intermetallics 2006, 14, 1194–1198. https://doi.org/10.1016/j.intermet.2005.11.016
[19] Yeoh, L.A.; Liss, K.-D.; Bartels, A.; Chladil, H.; Avdeev, M.; Clemens, H.; Gerling, R.; Buslaps, T. In Situ High-Energy X-Ray Diffraction Study and Quantitative Phase Analysis in the Alpha plus Gamma Phase Field of Titanium Aluminides. Scr. Mater. 2007, 57, 1145–1148. https://doi.org/10.1016/j.scriptamat.2007.08.021
[20] Li, X.; Dippenaar, R.; Shiro, A.; Shobu, T.; Higo, Y.; Reid, M.; Suzuki, H.; Akita, K.; Funakoshi, K.-I.; Liss, K.-D. Lattice Parameter Evolution during Heating of Ti-45Al-7.5Nb-0.25/0.5C Alloys under Atmospheric and High Pressures. Intermetallics 2018, 102, 120–131. https://doi.org/10.1016/j.intermet.2018.08.011
[21] Liss, K.-D.; Funakoshi, K.-I.; Dippenaar, R.J.; Higo, Y.; Shiro, A.; Reid, M.; Suzuki, H.; Shobu, T.; Akita, K. Hydrostatic Compression Behavior and High-Pressure Stabilized β-Phase in γ-Based Titanium Aluminide Intermetallics. Metals 2016, 6, 165. https://doi.org/10.3390/met6070165
[22] Zhao, W.; Han, J.-K.; Kuzminova, Y.O.; Evlashin, S.A.; Zhilyaev, A.P.; Pesin, A.M.; Jang, J.; Liss, K.-D.; Kawasaki, M. Significance of Grain Refinement on Micro-Mechanical Properties and Structures of Additively-Manufactured CoCrFeNi High-Entropy Alloy. Mater. Sci. Eng. A 2021, 807, 140898. https://doi.org/10.1016/j.msea.2021.140898
[23] Paul, A.; Liu, X.; Kawasaki, M.; Liss, K.-D. Inverted Magnetic Response in Severe Plastically Deformed Nanostructured High-Entropy Alloy. Appl. Phys. Lett. 2023, 122, 052402. https://doi.org/10.1063/5.0138040
[24] Kawasaki, M.; Han, J.-K.; Liu, X.; Moon, S.-C.; Liss, K.-D. Synchrotron High-Energy X-Ray & Neutron Diffraction, and Laser-Scanning Confocal Microscopy: In-Situ Characterization Techniques for Bulk Nanocrystalline Metals. Mater. Trans. 2023, advpub, MT-MF2022022. https://doi.org/10.2320/matertrans.MT-MF2022022
[25] Yan, K.; Bhattacharyya, D.; Lian, Q.; Kabra, S.; Kawasaki, M.; Carr, D.G.; Callaghan, M.D.; Avdeev, M.; Li, H.; Wang, Y.; et al. Martensitic Phase Transformation and Deformation Behavior of Fe–Mn–C–Al Twinning-Induced Plasticity Steel during High-Pressure Torsion. Adv. Eng. Mater. 2014, 16, 927–932. https://doi.org/10.1002/adem.201300488
[26] Li, X.; Dippenaar, R.J.; Han, J.-K.; Kawasaki, M.; Liss, K.-D. Phase Transformation and Structure Evolution of a Ti-45Al-7.5Nb Alloy Processed by High-Pressure Torsion. J. Alloys Compd. 2019, 787, 1149–1157. https://doi.org/10.1016/j.jallcom.2019.02.174
[27] Asta, M.; de Fontaine, D.; van Schilfgaarde, M. First-Principles Study of Phase Stability of Ti–Al Intermetallic Compounds. J. Mater. Res. 1993, 8, 2554–2568. https://doi.org/10.1557/JMR.1993.2554
[28] Liss, K.-D.; Liu, X.; Li, X.; Han, J.-K.; Dippenaar, R.J.; Kawasaki, M. On the Thermal Evolution of High-Pressure Torsion Processed Titanium Aluminide. Mater. Lett. 2021, 304, 130650. https://doi.org/10.1016/j.matlet.2021.130650
[29] Kawasaki, M.; Han, H.-K.; Moon, S.-C.; Liss, K.-D. In-Situ Heating Observations on Microstructure Relaxation of Ultrafine-Grained High-Entropy Alloys Using Neutron Diffraction and Laser-Scanning Confocal Microscopy. Mater. Res. Forum LLC 2023.
[30] Liu, X.; Han, J.-K.; Onuki, Y.; Kuzminova, Y.O.; Evlashin, S.A.; Kawasaki, M.; Liss, K.-D. In Situ Neutron Diffraction Investigating Microstructure and Texture Evolution upon Heating of Nanostructured CoCrFeNi High-Entropy Alloy. Adv. Eng. Mater. 2023, 25, 2201256. https://doi.org/10.1002/adem.202201256
[31] Nakajima, K.; Kawakita, Y.; Itoh, S.; Abe, J.; Aizawa, K.; Aoki, H.; Endo, H.; Fujita, M.; Funakoshi, K.; Gong, W.; et al. Materials and Life Science Experimental Facility (MLF) at the Japan Proton Accelerator Research Complex II: Neutron Scattering Instruments. Quantum Beam Sci. 2017, 1, 9. https://doi.org/10.3390/qubs1030009
[32] Liss, K.-D. Materials and Life Science with Quantum Beams at the Japan Proton Accelerator Research Complex. Quantum Beam Sci. 2018, 2, 10. https://doi.org/10.3390/qubs2020010
[33] Takada, H.; Haga, K.; Teshigawara, M.; Aso, T.; Meigo, S.-I.; Kogawa, H.; Naoe, T.; Wakui, T.; Ooi, M.; Harada, M.; et al. Materials and Life Science Experimental Facility at the Japan Proton Accelerator Research Complex I: Pulsed Spallation Neutron Source. Quantum Beam Sci. 2017, 1, 8. https://doi.org/10.3390/qubs1020008
[34] Kawasaki, M.; Han, J.-K.; Liu, X.; Onuki, Y.; Kuzminova, Y.O.; Evlashin, S.A.; Pesin, A.M.; Zhilyaev, A.P.; Liss, K.-D. In Situ Heating Neutron and X-Ray Diffraction Analyses for Revealing Structural Evolution during Postprinting Treatments of Additive-Manufactured 316L Stainless Steel. Adv. Eng. Mater. 2022, 24, 2100968. https://doi.org/10.1002/adem.202100968
[35] Liss, K.-D.; Bartels, A.; Clemens, H.; Bystrzanowski, S.; Stark, A.; Buslaps, T.; Schimansky, F.-P.; Gerling, R.; Scheu, C.; Schreyer, A. Recrystallization and Phase Transitions in a Gamma-TiAl-Based Alloy as Observed by Ex Situ and in Situ High-Energy X-Ray Diffraction. Acta Mater. 2006, 54, 3721–3735. https://doi.org/10.1016/j.actamat.2006.04.004
[36] Yan, K.; Liss, K.-D.; Garbe, U.; Daniels, J.; Kirstein, O.; Li, H.; Dippenaar, R. From Single Grains to Texture. Adv. Eng. Mater. 2009, 11, 771–773. https://doi.org/10.1002/adem.200900163
[37] Liss, K.-D.; Garbe, U.; Li, H.; Schambron, T.; Almer, J.D.; Yan, K. In Situ Observation of Dynamic Recrystallization in the Bulk of Zirconium Alloy. Adv. Eng. Mater. 2009, 11, 637–640. https://doi.org/10.1002/adem.200900094
[38] Liss, K.-D.; Yan, K. Thermo-Mechanical Processing in a Synchrotron Beam. Mater. Sci. Eng. – Struct. Mater. Prop. Microstruct. Process. 2010, 528, 11–27. https://doi.org/10.1016/j.msea.2010.06.017
[39] Liss, K.-D.; Schmoelzer, T.; Yan, K.; Reid, M.; Peel, M.; Dippenaar, R.; Clemens, H. In Situ Study of Dynamic Recrystallization and Hot Deformation Behavior of a Multiphase Titanium Aluminide Alloy. J. Appl. Phys. 2009, 106, 113526-113526–6. https://doi.org/doi:10.1063/1.3266177
[40] Liss, K.-D. Thermo-Mechanical Processing in a Synchrotron Beam – from Simple Metals to Multiphase Alloys and Intermetallics. World J. Eng. 2010, 7, P438,1-4.
[41] Liss, K.D. Thermo-Mechanical Processing in a Synchrotron Beam. Mater. Sci. Forum 2012, 715–716, 102–102. https://doi.org/10.4028/www.scientific.net/MSF.715-716.102