Hot deformation of ultrafine-grained TiC-reinforced AlCrFeNbMoTiV refractory high entropy alloys
P. Martin, C. Aguilar, B. Ferrari, A.J. Sánchez-Herencia, J.M. Cabrera
download PDFAbstract. In the present work, the hot deformation behavior of the AlCr0.2FeNbMoTiV2 refractory high-entropy alloy was studied by means of its constitutive modeling. The samples were fabricated using mechanical alloying and spark plasma sintering, resulting in an ultrafine-grained microstructure consisting of a main bcc solid solution, Laves phase, and TiC and Al2O3 precipitates. Compression tests between 950 and 1100 ºC and 5·10-4 and 10-2 s-1 of strain rate were performed in order to determine the constitutive equations. Additionally, the samples were subjected to a heat treatment at 1350 ºC for 16 h, presenting a considerable increment in the specific yield strength (from 33 to 94 MPa·g-1·cm3 at 1000 ºC) accompanied by a slight increase of the grain size (from 0.35 to 1.2 µm). Overall, the heat-treated AlCr0.2FeNbMoTiV2 alloy presented one of the highest specific yield strength values among refractory high entropy alloys.
Keywords
Constitutive Equation, High-Entropy Alloys, Complex Concentrated Alloys, Ultrafine-Grained, Mechanical Properties
Published online , 9 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: P. Martin, C. Aguilar, B. Ferrari, A.J. Sánchez-Herencia, J.M. Cabrera, Hot deformation of ultrafine-grained TiC-reinforced AlCrFeNbMoTiV refractory high entropy alloys, Materials Research Proceedings, Vol. 32, pp 244-252, 2023
DOI: https://doi.org/10.21741/9781644902615-28
The article was published as article 28 of the book Superplasticity in Advanced Materials
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, P.K. Liaw, Intermetallics 18 (2010) 1758-1765. https://doi.org/10.1016/j.intermet.2010.05.014
[2] O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Intermetallics 19 (2011) 698-706. https://doi.org/10.1016/j.intermet.2011.01.004
[3] O.N. Senkov, D.B. Miracle, K.J. Chaput, J.P. Couzinie, J. Mater. Res. 33 (2018) 3092-3128. https://doi.org/10.1557/jmr.2018.153
[4] B. Kang, J. Lee, H.J. Ryu, S.H. Hong, J. Alloys Compd. 767 (2018) 1012-1021. https://doi.org/10.1016/j.jallcom.2018.07.145
[5] B. Kang, T. Kong, H.J. Ryu, S.H. Hong, J. Mater. Sci. Technol. 69 (2021) 32-41. https://doi.org/10.1016/j.jmst.2020.07.012
[6] J. Pan, T. Dai, T. Lu, X. Ni, J. Dai, M. Li, Mater. Sci. Eng. A 738 (2018) 362-366. https://doi.org/10.1016/j.msea.2018.09.089
[7] B. Kang, J. Lee, H.J. Ryu, S.H. Hong, Mater. Sci. Eng. A 712 (2018) 616-624. https://doi.org/10.1016/j.msea.2017.12.021
[8] J.M. Cabrera, A. Al Omar, J.J. Jonas, J.M. Prado, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 28 (1997) 2233-2244. https://doi.org/10.1007/s11661-997-0181-8
[9] Q. Liu, G. Wang, Y. Liu, X. Sui, Y. Chen, S. Luo, Mater. Sci. Eng. A 809 (2021) 140922. https://doi.org/10.1016/j.msea.2021.140922
[10] R.R. Eleti, A.H. Chokshi, A. Shibata, N. Tsuji, Acta Mater. 183 (2020) 64-77. https://doi.org/10.1016/j.actamat.2019.11.001
[11] Z. Savaedi, R. Motallebi, H. Mirzadeh, J. Alloys Compd. 903 (2022) 163964. https://doi.org/10.1016/j.jallcom.2022.163964
[12] G. Neumann, C. Tuijn, Self-Diffusion and Impurity Diffusion in Pure Metals, First Edit, Elsevier Ltd., 2009. https://doi.org/10.1016/S1470-1804(08)00010-2
[13] O.N. Senkov, J.M. Scott, S. V. Senkova, F. Meisenkothen, D.B. Miracle, C.F. Woodward, J. Mater. Sci. 47 (2012) 4062-4074. https://doi.org/10.1007/s10853-012-6260-2
[14] A. Fu, W. Guo, B. Liu, Y. Cao, L. Xu, Q. Fang, H. Yang, Y. Liu, J. Alloys Compd. 815 (2020). https://doi.org/10.1016/j.jallcom.2019.152466
[15] X. Li, A. Fu, Y. Cao, S. Xu, S. Gao, J. Alloys Compd. 894 (2022). https://doi.org/10.1016/j.jallcom.2021.162414