Friction stir processing to improve grain refinement and superplasticity of Al-Mg-Mn-Cr alloy

Friction stir processing to improve grain refinement and superplasticity of Al-Mg-Mn-Cr alloy

Anna A. Kishchik, Ahmed O. Mosleh, Olga A. Yakovtseva, Anton D. Kotov, Anastasia V. Mikhaylovskaya

download PDF

Abstract. In this study the Al-4.8Mg-1.0Mn-0.15Cr alloy was frictionally stir processed in order to enhance grain refinement effect and superplastic properties. The microstructure after friction stir processing (FSP) was analyzed using light, scanning and transmission electron microscopies. An additional cold rolling (50%) was performed after the FSP, and a comparative study in terms of microstructure and superplasticity was done between the samples processed using hot rolling and further FSP, FSP and cold rolling, and cold rolling without FSP. The superplastic properties were studied at temperatures of 450 and 500 °C with constant strain rates of 1×10-2 and
1×10-2 s-1. The treatment regime including FSP and further cold rolling improved superplasticity due to fine-grained and homogeneous grain structure with a good thermal stability. At a temperature of 500°C and strain rates of 1×10-3 – 1×10-2 s-1 the alloy demonstrated 330-450 % elongation with a flow stress of 10-20 MPa.

Keywords
Aluminum Alloys, Friction Stir Processing (FSP), Microstructure, Superplasticity, Grain Size

Published online , 8 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Anna A. Kishchik, Ahmed O. Mosleh, Olga A. Yakovtseva, Anton D. Kotov, Anastasia V. Mikhaylovskaya, Friction stir processing to improve grain refinement and superplasticity of Al-Mg-Mn-Cr alloy, Materials Research Proceedings, Vol. 32, pp 173-180, 2023

DOI: https://doi.org/10.21741/9781644902615-19

The article was published as article 19 of the book Superplasticity in Advanced Materials

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] A.H. Chokshi, Adv. Eng. Mater. 2020, 22, 1900748. https://doi.org/10.1002/adem.201900748
[2] A.K. Basak, A. Pramanik, C. Prakash, S. Shankar, S.S. Sehgal, Mater. Today Commun. 2023, 35. https://doi.org/10.1016/j.mtcomm.2023.105830
[3] H. Masuda, T. Kanazawa, H. Tobe, E. Sato, Scr. Mater. 2018, 149, 84. https://doi.org/10.1016/j.scriptamat.2018.02.021
[4] H. Masuda, E. Sato, Acta Mater. 2020, 197, 235. https://doi.org/10.1016/j.actamat.2020.07.042
[5] T.G. Langdon, J. Mater. Sci. 2007, 42, 3388. https://doi.org/10.1007/s10853-006-1475-8
[6] E. V. Bobruk, P.D. Dolzhenko, M.Y. Murashkin, R.Z. Valiev, N.A. Enikeev, Materials (Basel). 2022, 15, 6983. https://doi.org/10.3390/ma15196983
[7] E. V. Bobruk, M.Y. Murashkin, I.A. Ramazanov, V.U. Kazykhanov, R.Z. Valiev, Materials (Basel). 2023, 16, 727. https://doi.org/10.3390/ma16020727
[8] M. Kawasaki, T.G. Langdon, Mater. Trans. 2019, 60, 1123. https://doi.org/10.2320/matertrans.MF201915
[9] R.B. Figueiredo, M. Kawasaki, T.G. Langdon, Prog. Mater. Sci. 2023, 137, 101131. https://doi.org/10.1016/j.pmatsci.2023.101131
[10] F.A. Mohamed, Adv. Eng. Mater. 2020, 22, 1900532. https://doi.org/10.1002/adem.201900532
[11] L. Bhatta, A. Pesin, A.P. Zhilyaev, P. Tandon, C. Kong, H. Yu, Metals (Basel). 2020, 10, 77. https://doi.org/10.3390/met10010077
[12] T.G. Nieh, J. Wadsworth, O.D. Sherby, O.D.S.T.G.N. J. Wadsworth, Superplasticity in Metals and Ceramics, Cambridge University Press, New York 1997. https://doi.org/10.1017/CBO9780511525230
[13] T.G. Langdon, Acta Metall. Mater. 1994, 42, 2437. https://doi.org/10.1016/0956-7151(94)90322-0
[14] K. Higashi, Mater. Sci. Technol. 2000, 16, 1320. https://doi.org/10.1179/026708300101507172
[15] T.G. Langdon, Mater. Trans. JIM 1999, 40, 716. https://doi.org/10.2320/matertrans1989.40.716
[16] V. Patel, W. Li, A. Vairis, V. Badheka, Crit. Rev. Solid State Mater. Sci. 2019, 44, 378. https://doi.org/10.1080/10408436.2018.1490251
[17] R.S. Mishra, Z.Y. Ma, Mater. Sci. Eng. R Reports 2005, 50, 1. https://doi.org/10.1016/j.mser.2005.07.001
[18] D. Lohwasser, Z. Chen, in Frict. Stir Weld., Elsevier2010, 1. https://doi.org/10.1533/9781845697716.1
[19] Z.Y. Ma, R.S. Mishra, F.C. Liu, Mater. Sci. Eng. A 2009, 505, 70. https://doi.org/10.1016/j.msea.2008.11.016
[20] K.M. Mehta, V.J. Badheka, Wear 2023, 522, 204719. https://doi.org/10.1016/j.wear.2023.204719
[21] Z. Wei, A. Kulandaivel, T. Hermanto, R. Vaira Vignesh, S. Mehrez, M. Paidar, A. Mohd Zain, V. Mohanavel, Mater. Lett. 2023, 346, 134532. https://doi.org/10.1016/j.matlet.2023.134532
[22] Shalok Bharti, N.D. Ghetiya, K.M. Patel, Phys. Met. Metallogr. 2022, 123, 1387. https://doi.org/10.1134/S0031918X21100586
[23] S. Malopheyev, S. Mironov, R. Kaibyshev, Mater. Charact. 2023, 200, 112909. https://doi.org/10.1016/j.matchar.2023.112909
[24] S. Mironov, Y.S. Sato, H. Kokawa, Acta Mater. 2008, 56, 2602. https://doi.org/10.1016/j.actamat.2008.01.040
[25] I. Vysotskii, S. Malopheyev, S. Mironov, R. Kaibyshev, Mater. Charact. 2022, 185, 111758. https://doi.org/10.1016/j.matchar.2022.111758
[26] H. Mirzadeh, Mater. Sci. Eng. A 2021, 819, 141499. https://doi.org/10.1016/j.msea.2021.141499
[27] Y.B. Sun, X.P. Chen, J. Xie, C. Wang, Y.F. An, Q. Liu, Mater. Today Commun. 2022, 33, 104217. https://doi.org/10.1016/j.mtcomm.2022.104217
[28] F. Cao, C. Xiang, S. Kong, N. Guo, H. Shang, Materials (Basel). 2023, 16, 2345. https://doi.org/10.3390/ma16062345
[29] A. Orozco-Caballero, M. Álvarez-Leal, F. Carreño, O.A. Ruano, Metals (Basel). 2022, 12, 1880. https://doi.org/10.3390/met12111880
[30] J. He, Y. Hu, Y. Sun, W. Li, G. Luo, Mater. Res. Express 2022, 9, 096509. https://doi.org/10.1088/2053-1591/ac8f20
[31] X.C. Luo, D.T. Zhang, G.H. Cao, C. Qiu, D.L. Chen, Mater. Sci. Eng. A 2019, 759, 234. https://doi.org/10.1016/j.msea.2019.05.050
[32] I. Charit, R.S. Mishra, Mater. Sci. Eng. A 2003, 359, 290. https://doi.org/10.1016/S0921-5093(03)00367-8
[33] I. Charit, R.S. Mishra, Acta Mater. 2005, 53, 4211. https://doi.org/10.1016/j.actamat.2005.05.021
[34] Z.. Ma, R.. Mishra, M.. Mahoney, Acta Mater. 2002, 50, 4419. https://doi.org/10.1016/S1359-6454(02)00278-1
[35] F.C. Liu, B.L. Xiao, K. Wang, Z.Y. Ma, Mater. Sci. Eng. A 2010, 527, 4191. https://doi.org/10.1016/j.msea.2010.03.065
[36] A. Denquin, D. Allehaux, M.H. Campagnac, G. Lapasset, Mater. Sci. Forum 2003, 426-432, 2921. https://doi.org/10.4028/www.scientific.net/MSF.426-432.2921
[37] B. Yang, J. Yan, M.A. Sutton, A.P. Reynolds, Mater. Sci. Eng. A 2004, 364, 55. https://doi.org/10.1016/S0921-5093(03)00532-X
[38] H.G. Salem, Scr. Mater. 2003, 49, 1103. https://doi.org/10.1016/j.scriptamat.2003.08.010
[39] V. V. Patel, V. Badheka, A. Kumar, Mater. Manuf. Process. 2016, 31, 1573. https://doi.org/10.1080/10426914.2015.1103868
[40] A. Smolej, D. Klobčar, B. Skaza, A. Nagode, E. Slaček, V. Dragojević, S. Smolej, Mater. Sci. Eng. A 2014, 590, 239. https://doi.org/10.1016/j.msea.2013.10.027
[41] A. Jamali, S.E. Mirsalehi, CIRP J. Manuf. Sci. Technol. 2022, 37, 55. https://doi.org/10.1016/j.cirpj.2021.12.008
[42] S. Pradeep, V. Pancholi, Metall. Mater. Trans. A 2014, 45, 6207. https://doi.org/10.1007/s11661-014-2573-x
[43] T. Kudo, A. Goto, K. Saito, in Mater. Sci. Forum, 2013, 271. https://doi.org/10.4028/www.scientific.net/MSF.735.271
[44] A.O. Mosleh, O.A. Yakovtseva, A.A. Kishchik, A.D. Kotov, E.B. Moustafa, A. V. Mikhaylovskaya, JOM 2023.
[45] O. Engler, S. Miller-Jupp, J. Alloys Compd. 2016, 689, 998. https://doi.org/10.1016/j.jallcom.2016.08.070
[46] B. Yang, M. Gao, Y. Liu, S. Pan, S. Meng, Y. Fu, R. Guan, Mater. Sci. Eng. A 2023, 872, 144952. https://doi.org/10.1016/j.msea.2023.144952
[47] S. Pan, Z. Wang, C. Li, D. Wan, X. Chen, K. Chen, Y. Li, Mater. Des. 2023, 226, 111647. https://doi.org/10.1016/j.matdes.2023.111647
[48] M. Mofarrehi, M. Javidani, X.-G. Chen, Mater. Sci. Eng. A 2022, 845, 143217. https://doi.org/10.1016/j.msea.2022.143217
[49] A.Y. Algendy, K. Liu, X.G. Chen, Mater. Charact. 2021, 181, 111487. https://doi.org/10.1016/j.matchar.2021.111487
[50] A.G. Mochugovskiy, N.Y. Tabachkova, M.E. Ghayoumabadi, V.V. Cheverikin, A.V. Mikhaylovskaya, J. Mater. Sci. Technol. 2021, 87, 196. https://doi.org/10.1016/j.jmst.2021.01.055
[51] A.G. Mochugovskiy, N.Y. Tabachkova, A.V. Mikhaylovskaya, Mater. Lett. 2021, 284, 128945. https://doi.org/10.1016/j.matlet.2020.128945
[52] A. Mochugovskiy, N. Tabachkova, A. Mikhaylovskaya, Mater. Lett. 2019, 247, 200. https://doi.org/10.1016/j.matlet.2019.03.126
[53] F. Zupanič, T. Bončina, Solid State Phenom. 2022, 327, 26. https://doi.org/10.4028/www.scientific.net/SSP.327.26
[54] A.A. Kishchik, M.S. Kishchik, A.D. Kotov, A.V. Mikhaylovskaya, Phys. Met. Metallogr. 2020, 121, 489. https://doi.org/10.1134/S0031918X20050075
[55] I. Nikulin, A. Kipelova, S. Malopheyev, R. Kaibyshev, Acta Mater. 2012, 60, 487. https://doi.org/10.1016/j.actamat.2011.10.023