Study on superplastic gas-bulging properties and microstructure evolution of as-rolled 2A97 Al-Li alloy

Study on superplastic gas-bulging properties and microstructure evolution of as-rolled 2A97 Al-Li alloy

Zhang Yanling, Liu Jiajia, Xu Huiyuan, Du Lihua

download PDF

Abstract. In this paper, the forming properties of as-rolled 2A97 Al-Li alloy at 370 ~430 ℃ and 0.02~0.08 MPa/min were studied by Superplastic gas-bulging experiment, the microstructure and mechanical properties of 2A97 Al-Li alloy after deformation were evaluated and analysed by means of EBSD, TEM and other testing methods. The results show that the as-rolled 2A97 Al-Li alloy has good superplastic deformation ability, the optimum forming parameters are 390℃, 0.06 MPa/min, and the maximum height of cap cone is 74 mm under these conditions. Dynamic recry -stallization of rolled microstructure occurs during superplastic deformation, the microstructure after superplastic deformation is fine, equiaxed and the average grain size is less than 5 μm. The material keeps good strength and plasticity after superplastic deformation, the tensile fracture shows obvious ductile fracture characteristics, and there are a lot of dimples with regular shape and uniform distribution on the fracture surface. After superplastic forming, it undergoes 520 ℃/2h solution treatment, water quenching, and aging at 165 ℃/36h, the properties of 2A97 Al- Li were as follows: tensile strength 527MPa, yield strength 441MPa, and elongation 8.3%, respectively.

Keywords
As-Rolled 2A97 Al-Li Alloy, Superplastic Gas-Bulging, Wall Thickness, Dynamic Recrystallization, Mechanical Properties

Published online , 8 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Zhang Yanling, Liu Jiajia, Xu Huiyuan, Du Lihua, Study on superplastic gas-bulging properties and microstructure evolution of as-rolled 2A97 Al-Li alloy, Materials Research Proceedings, Vol. 32, pp 149-156, 2023

DOI: https://doi.org/10.21741/9781644902615-16

The article was published as article 16 of the book Superplasticity in Advanced Materials

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] Dejong H F. Properties and Application of Aluminum-Lithium Alloys [J]. Aluminum, 1984,60 (9): 673~679.
[2] N. E. Prasad, A. Gokhale, R. J. H. Wanhill. Aluminum-Lithium Alloys: Processing, Properties, and Applications, 2014, 27.
[3] E. A. Starke, J. T. Staley. Application of modern aluminum alloys to aircraft, Prog. Aerosp. Sci. 32 (1996) 2, 131-172. https://doi.org/10.1016/0376-0421(95)00004-6
[4] I. N. Friedlander, A. G. Bratukhin, V. A. Davydov. Soviet Al-Li alloys of aerospace applications, in: Peters M, Winkler P J,eds. Proceedings of Sixth International Aluminum-Lithium Confere -nce. Garmisclr Partenkirchen: DMG Verlag,1992.
[5] J. T. Staley, J. Liu, W. H. Hunt. Aluminum alloys for aerostructures[J]. Advanced Materials & Processes, 1997, 152(4): 17-20.
[6] S. Hori, M. Tokizane, N. Furushiro. Superplasticity in advanced materials[M]. The Japan Society of Research on Superplasticity. Japan Osaka. 1991.
[7] J. Lin, F.P.E. Dunne. Modelling grain growth evolution and necking in superplastic blow-formi -ng[J]. International Journal of Mechanical Sciences, 2001, 43(3): 595-609. https://doi.org/10.1016/S0020-7403(00)00055-2
[8] T. G. Langdo. The mechanical properties of superplastic materials[J]. Metallurgical Transactio -ns A, 1982, 13(5): 689-701. https://doi.org/10.1007/BF02642383
[9] P. S. Bate, N. Ridley, B. Zhang. Mechanical behaviour and microstructural evolution in superplastic Al-Li-Mg-Cu -Zr AA8090[J]. Acta Materialia, 2007, 55(15): 4995-5006. https://doi.org/10.1016/j.actamat.2007.05.017
[10] W. Fan, B.P. Kashyap, M.C.Chaturvedi. Effects of strain rate and test temperature on flow behaviour and Micro -structural evolution in AA 8090 Al-Li alloy[J]. Metal Science Journal, 2013, 17(4): 431-438. https://doi.org/10.1179/026708301101510005
[11]C. Gao, Y. Luan, J. C. Yu, et al. Effect of thermo-mechanical treatment process on microstructure and mechanical properties of 2A97 Al-Li alloy[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(7): 2196-2202. https://doi.org/10.1016/S1003-6326(14)63332-X
[12] L. Li, L. Y. Ye, Y. L. Deng Y L, et al. Effects of intermediate annealing on grain refinement and superplasticity of 2A97 aluminum-lithium alloy[J]. Chinese Journal of Nonferrous Metals, 2015, 25(1): 36-42. https://doi.org/10.1016/S1003-6326(15)63576-2
[13] L. Jia, X.P, Ren, H. L. Hou, et al. Microstructural evolution and superplastic deformation mechanisms of as-rolled 2A97 alloy at low-temperature[J]. Materials Science and Engineering A, 2019, 759(JUN.24):19-29. https://doi.org/10.1016/j.msea.2019.04.102
[14] L. Jia, X.P, Ren, Y. L. Zhang, H. L. Hou. Forming Limits Analysis of Superplastic 2A97 Al-Li Alloy[J]. Materiali in Tehnologije, 2020, 54(3): 397-405. https://doi.org/10.17222/mit.2019.240
[15] X. Zhang, L. Xie, L. Ye, P. Zhang, Effect of aging treatment on grain refinement and superplasticity of 2A97 aluminum-lithium alloy, Heat Treat. Met. 39 (2014) 2, 88-93.
[16] L. Y. Ye, Y.L.Deng, Y.L.Zhang, L. Liu,L,Xie,X. M. Zhang. China. Patent CN103882351B. (2016).