Nanotechnology in Agricultural Practices: Prospects and Potential

$30.00

Nanotechnology in Agricultural Practices: Prospects and Potential

N.G. Giri, N.S. Abbas, Saroj Kumar Shukla

The novel features of nano confined materials properties are widely explored in several agricultural practices i.e. seed coating, soil conditioning, preservatives and packaging of agro based products. The evolution of materials properties due to nano confinements like controlled degradability, solubility, responsiveness, gas barrier and porosity has added several suitable advantageous features in agriculture practices to help the farmers, traders, consumers and policy makers. In the context of the above development, the present chapter describes the basic features of nano materials to use in agricultural practices along with their impact and effectiveness. Further, the suitable scheme and illustration are used on the basis of available literatures to make the subject lucid and effective along with existing challenges.

Keywords
Nanomaterials, Properties, Soil Nutrient, Protection and Monitoring

Published online , 24 pages

Citation: N.G. Giri, N.S. Abbas, Saroj Kumar Shukla, Nanotechnology in Agricultural Practices: Prospects and Potential, Materials Research Foundations, Vol. 148, pp 252-275, 2023

DOI: https://doi.org/10.21741/9781644902554-9

Part of the book on Applications of Emerging Nanomaterials and Nanotechnology

References
[1] A.S.Prabha, J.A. Thangakani, N.R. Devi, R. Dorothy, T.A. Nguyen, S.S. Kumaran, S. Rajendran, Nanotechnology and sustainable agriculture. In Nanosensors for Smart Agriculture, Elsevier, (2022)25-39. https://doi.org/10.1016/B978-0-12-824554-5.00016-1
[2] U. Muhammad, F.Muhammad, W.Abdul, N. Ahmad, A.C. Sardar, R.U.Hafeez , A. Imran, S. Muhammad, Nanotechnology in agriculture: Current status, challenges, and future opportunities. Sci. Total Environ., 721(2020) 137778. https://doi.org/10.1016/j.scitotenv.2020.137778
[3] L. Muthukrishnan, An overview on the nanotechnological expansion, toxicity assessment and remediating approaches in Agriculture and Food industry, Environ. Technol. Innov., 25,(2022)102136, https://doi.org/10.1016/j.eti.2021.102136
[4] P. Zhang, Z. Guo, S. Ullah, G. Melagraki, A. Afantitis, I. Lynch, Nanotechnology and artificial intelligence to enable sustainable and precision agriculture. Nat. Plants, 7(7), (2021)864-876. https://doi.org/10.1038/s41477-021-00946-6
[5] H. Singh, A. Sharma, S.K. Bhardwaj, S.K.Arya, N. Bhardwaj, M. Khatri, Recent advances in the applications of nano-agrochemicals for sustainable agricultural development. Environ. Sci.: Process. Impacts, 23(2), (2021)213-239. https://doi.org/10.1039/D0EM00404A
[6] A.D. Tiple, V.J. Badwaik, S.V. Padwad, R.G. Chaudhary, N.B. Singh, A Review on Nanotoxicology: Aquatic Environment and Biological System, Mater. Today: Proc, 29 (4),(2020) 1246-1250. https://doi.org/10.1016/j.matpr.2020.05.755
[7] N. Baig, I. Kammakakam, W. Falath, Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Mater. Adv. 2(6),(2021)1821-1871. https://doi.org/10.1039/D0MA00807A
[8] C. Bartolucci, V. Scognamiglio, A. Antonacci, L.F. Fraceto, What makes nanotechnologies applied to agriculture green? Nano Today, 43(2022)101389. https://doi.org/10.1016/j.nantod.2022.101389
[9] Y. Shang, M. Hasan, G.J. Ahammed, M. Li, H. Yin, J. Zhou, Applications of nanotechnology in plant growth and crop protection: a review. Molecules, 24(14),(2019) 2558. https://doi.org/10.3390/molecules24142558
[10] G. Ginni, S. Kavitha, Y. Kannah, S.K. Bhatia, A. Kumar, M. Rajkumar, N.T.L. Chi, Valorization of agricultural residues: Different biorefinery routes. J. Environ Chem Eng, 9(4),(2021) 105435.
[11] Food wastage Footprint-Impacts on natural resources: Summary Report. Food and Agriculture Organization of the United Nations, Europe: Springer; (2003).
[12] O. Tepe, A.Y. Dursun, Exo-pectinase production by Bacillus pumilus using different agricultural wastes and optimizing of medium components using response surface methodology. Environ Sci Pollut Res In.21(16),(2014) 9911-9920. https://doi.org/10.1007/s11356-014-2833-8
[13] E. Capanoglu, E. Nemli, F. Tomas-Barberan, Novel Approaches in the Valorization of Agricultural Wastes and Their Applications. J Agric Food Chem 70, (23)(2022) 6787-6804. https://doi.org/10.1021/acs.jafc.1c07104
[14] R.G. Chaudhary, G.S. Bhusari, A.D. Tiple, A.R. Rai, Metal/Metal Oxide Nanoparticles: Toxicity, Applications, and Future Prospects, Curr Pharm Des, 25,(2019) 4013-4029. https://doi.org/10.2174/1381612825666191111091326
[15] I. De Luca, F. Di Cristo, A. Valentino, G. Peluso, A. Di Salle, A. Calarco, Food-Derived Bioactive Molecules from Mediterranean Diet: Nanotechnological Approaches and Waste Valorization as Strategies to Improve Human Wellness. Polymers, 14(9)(2022)1726. https://doi.org/10.3390/polym14091726
[16] P. Nigam, Production of bioactive secondary metabolites. Biotechnology for agro-industrial residues utilisation (2009)129-145. https://doi.org/10.1007/978-1-4020-9942-7_7
[17] A.V. Shekdar, Sustainable solid waste management: an integrated approach for Asian countries. Waste Manag.29,(2009)1438-1448. https://doi.org/10.1016/j.wasman.2008.08.025
[18] T. Robinson, Membrane bioreactors: Nanotechnology improves landfill leachate quality. Filtr. Sep.44,(2007) 38-49. https://doi.org/10.1016/S0015-1882(07)70288-4
[19] S. Moogi, J. Lee, J. Jae, C. Sonne, J. Rinklebe, D.H. Kim, Y.K. Park, Valorization of rice husk to aromatics via thermocatalytic conversion in the presence of decomposed methane. Chem Eng J, 17,(2021) 129264 and15. https://doi.org/10.1016/j.cej.2021.129264
[20] B. Hu, K. Wang, L. Wu, S.H. Yu, M. Antonietti, M.M. Titirici, Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv Mater 22,(2020) 813-828. https://doi.org/10.1002/adma.200902812
[21] W.J. Liu, H. Jiang, H.Q. Yu, Development of biochar-based functional materials: toward a sustainable platform carbon material. Chem Rev, 115,(2015)12251-12285. https://doi.org/10.1021/acs.chemrev.5b00195
[22] M.S. Umekar, A.K. Potbhare, G.S. Bhusari, M.F. Desimone, R.G. Chaudhary, Bioinspired reduced graphene oxide based nanohybrids for photocatalysis and antibacterial applications. Curr Pharm Biotechnol, 22,(2021) 1759 – 1781. https://doi.org/10.2174/1389201022666201231115826
[23] N. Liu, K. Huo, M.T. McDowell, J. Zhao, Y. Cui, Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes. Sci Rep 3,(2013)1919. https://doi.org/10.1038/srep01919
[24] S. Ramakrishna, K. Fujihara, W.E. Teo, T. Yong, Z. Ma, R. Ramaseshan, Electrospun nanofibers: solving global issues. Mater Today 9,(2006)40-50. https://doi.org/10.1016/S1369-7021(06)71389-X
[25] S. Meraz-Dávila, C.E. Pérez-García, Feregrino-Perez, A. Ana, Challenges and advantages of electrospun nanofibers in agriculture: a review. Mater. Res. Express 8,(2021)042001. https://doi.org/10.1088/2053-1591/abee55
[26] M. Aman Mohammadi, S.M. Hosseini, M. Yousefi, Application of electrospinning technique in development of intelligent food packaging: A short review of recent trends, Food Sci. Nutr.8(2020) 4656-4665. https://doi.org/10.1002/fsn3.1781
[27]., A. Arora, P. Nandal, J. Singh, M.L. Verma, Nanobiotechnological advancements in lignocellulosic biomass pretreatment, Mater Sci Technol,3,(2020) 308-318. https://doi.org/10.1016/j.mset.2019.12.003
[28] A. Musa, M. Ahmad, M.Z. Hussein, S.M. Izham, Acid hydrolysis-mediated preparation of nanocrystalline cellulose from rice straw, Int j nanomater.nanotechnol nanomedicine,3(2),(2017) 51-56.
[29] P. Kampeerapappun, Extraction and characterization of cellulosenanocrystalsfromcornstover, J Met Mater Miner,25(1),(2015)19-26.
[30] B. Hong, F. Chen, G. Xue, Preparation and characterization of cellulose nanocrystals from bamboo pulp, Cellul Chem Technol, 50(2),(2016) 225-231.
[31] R.J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood, Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev. 40(7),(2011) 3941-3994. https://doi.org/10.1039/c0cs00108b
[32] L. Castro, M.L. Blázquez, J.A. Muñoz, F. González, C. García-Balboa, A. Ballester, Biosynthesis of gold nanowires using sugar beet pulp. Process Biochem., 46(5),(2011)1076-1082. https://doi.org/10.1016/j.procbio.2011.01.025
[33] D. Sharma, M.K. Varshney, S. Prasad, Bhawana, S. K. Shukla, Preparation and characterization of rice husk derived cellulose and polyvinyl alcohol blended heat sealable packaging film, Indian J Chem Technol, 28,(2021)453-459.
[34] B. Beig, M.B.K. Niazi, F. Sher, Z. Jahan, U.S. Malik, M.D. Khan, D.V. N. Vo, Nanotechnology-based controlled release of sustainable fertilizers. A review. Environ Chem Lett, 20, (2022)2709-2726. https://doi.org/10.1007/s10311-022-01409-w
[35] A. Mondal, M.S. Umekar, G.S. Bhusari, S. Mondal, R.G. Chaudhary, M. Sami, Biogenic synthesis of metal/metal oxide nanostructured materials, Curr Pharm Biotechnol, 22,(2021)1782 – 1793. https://doi.org/10.2174/1389201022666210111122911
[36] K. Shankramma, S. Yallappa, M.B. Shivanna, J. Manjanna, Fe2O3 magnetic nanoparticles to enhance S. lycopersicum (tomato) plant growth and their biomineralization. Appl Nanosci 6,(2016) 983-990. https://doi.org/10.1007/s13204-015-0510-y
[37] D. Lin, B. Xing Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environ Pollut 150(2),(2007) 243-250. https://doi.org/10.1016/j.envpol.2007.01.016
[38] N.M. Salem, L.S. Albanna, A. Abdeen, O.Q. Ibrahim, A.I. Awwad, Sulfur nanoparticles improves root and shoot growth of tomato. J Agric Sci 8(4),(2016)179-185. https://doi.org/10.5539/jas.v8n4p179
[39] A.Y. Ghidan, T.M. Al-Antary, A.M. Awwad, O.Y. Ghidan, S.E. Al Araj, M.A. Ateyyat, Comparison of different green synthesized nanomaterials on green peach aphid as aphicidal potential. Fresenius Environ Bull 27(10),(2018) 7009-7016.
[40] R. Kannaujia, P. Singh, V. Prasad, V. Pandey, Evaluating impacts of biogenic silver nanoparticles and ethylenediurea on wheat (Triticum aestivum L.) against ozone-induced damages. Environ Res, 203,(2022)11857. https://doi.org/10.1016/j.envres.2021.111857
[41] V. Krishna ,U. Hina , S. Arshdeep, R. Manisha, Influence of Zinc Application In Plant Growth: An Overview, Eur J Mol Clin Med, 7(7),(2020)2321-2326.
[42] R. Komal, P. Vishal, P. Kalavati, The Importance Of Zinc In Plant Growth- A Review, Int res j nat sci, 5(2),(2018)38-48.
[43] S. Lidvin Daisy, A. Christy Catherine Mary, Devi Kasthuri, S. Santhana, S. Rajendran, Prabha, S. SyedZahirullah, S. Magnesium oxide nanoparticles- Synthesis and Charecterisation, Int j nano corros sci eng 2(5),(2015) 64-69.
[44] S. Abinaya, P. Kavitha Helen, M. Prakash, A. Muthukrishnaraj, Green synthesis of magnesium oxide nanoparticles and its applications: A review, Sustain Chem Pharm 19(7),(2021)100368-100378. https://doi.org/10.1016/j.scp.2020.100368
[45] S.K. Moorthy, C.H. Ashok, K.V. Rao, C. Viswanathana, Synthesis and characterization of MgO nanoparticles by neem leaves through green method. Mater Today: Proc 2, (2015) 4360-4368. https://doi.org/10.1016/j.matpr.2015.10.027
[46] A. Awwad, A. Ahmad, Biosynthesis, characterization, and optical properties of magnesium hydroxide and oxide nanoflakes using Citrus limon leaf extract. Arab J Chem 1(2014)65-70.
[47] T. Guha, G. Gopal, A. Mukherjee, R. Kundu, Fe3O4-urea nanocomposites as a novel nitrogen fertilizer for improving nutrient utilization efficiency and reducing environmental pollution. Environ Pollut, 292(2022)118301. https://doi.org/10.1016/j.envpol.2021.118301
[48] C.O. Dimkpa, M.G. Campos, J. Fugice, K. Glass, A. Ozcan, Z. Huang, S. Santra, Synthesis and characterization of novel dual-capped Zn-urea nanofertilizers and application in nutrient delivery in wheat. Environmental Science: Advances, 1(1), (2022)47-58. https://doi.org/10.1039/D1VA00016K
[49] H. Yin, Y. Cao, B. Marelli, X. Zeng, A.J. Mason, C. Cao, Soil sensors and plant wearables for smart and precision agriculture. Adv Mater, 33(20),(2021) 2007764. https://doi.org/10.1002/adma.202007764
[50] M. Nadporozhskaya, N. Kovsh, R. Paolesse, L. Lvova, Recent Advances in Chemical Sensors for Soil Analysis: A Review. Chemosensors, 10(1),(2022) 35. https://doi.org/10.3390/chemosensors10010035
[51] P. Singh, C.S. Kushwaha, V.K. Singh, G.C. Dubey, S.K. Shukla, Chemiresitive sensing of volatile ammonia over zinc oxide encapsulated polypyrrole based nanocomposite, Sens Actuators B Chem, 342(10),(2021) 130042 https://doi.org/10.1016/j.snb.2021.130042
[52] M. Setka, J. Drbohlavova, J. Hubalek, Nanostructured Polypyrrole-Based Ammonia and Volatile Organic Compound Sensors, Sensors,17,(2017) 562. https://doi.org/10.3390/s17030562
[53] I. Chajanovsky, S. Cohen, G. Shtenberg, R.Y. Suckeveriene, Development and Characterization of Integrated Nano-Sensors for Organic Residues and pH Field Detection. Sensors, 21(17),(2021)5842. https://doi.org/10.3390/s21175842
[54] N.S. Abbas, S.K. Shukla, Contemporary Advances in humidity sensing materials method and performances, Adv Mater Lett, 12,(2021) 21061634. https://doi.org/10.5185/amlett.2021.061634
[55] B. Kashyap, R. Kumar, Sensing methodologies in agriculture for soil moisture and nutrient monitoring. IEEE Access, 9,(2021) 14095-14121. https://doi.org/10.1109/ACCESS.2021.3052478
[56] P. Singh, C.S. Kushwaha, S.K. Shukla, G.C. Dubey Synthesis and Humidity Sensing Properties of NiO Intercalated Polyaniline Nanocomposite, . Polym Plast Technol Eng, 58(2),(2018) 1-9. https://doi.org/10.1080/03602559.2018.1466170
[57] E. Safitri, L.Y. Heng, M. Ahmad, T.L. Ling, Fluorescence bioanalytical method for urea determination based on water soluble ZnS quantum dots. Sens Actuators B Chem, 240,(2017)763-769. https://doi.org/10.1016/j.snb.2016.08.129
[58] H. Kalita, V.S. Palaparthy, M.S. Baghini, M. Aslam, Electrochemical synthesis of graphene quantum dots from graphene oxide at room temperature and its soil moisture sensing properties. Carbon, 165,(2020) 9-17. https://doi.org/10.1016/j.carbon.2020.04.021
[59] W. Shu, Z. Yang, Z. Xu, T. Zhu, X. Tian, Y. Yang, Effects of one-dimensional nanomaterial polyaniline nanorods on earthworm biomarkers and soil enzymes. Environ Sci Pollut Res, 29 (2022), 35217-35229. https://doi.org/10.1007/s11356-021-18260-1
[60] H. Ehzari, M. Safari, M. Samimi, M. Shamsipur, M.B. Gholivand, A highly sensitive electrochemical biosensor for chlorpyrifos pesticide detection using the adsorbent nanomatrix contain the human serum albumin and the Pd: CdTe quantum dots. Microchem J, 179(2022)107424. https://doi.org/10.1016/j.microc.2022.107424
[61] D. Ilager, N.P. Shetti, K.R. Reddy, S.M. Tuwar, T.M. Aminabhavi, Nanostructured graphitic carbon nitride (g-C3N4)-CTAB modified electrode for the highly sensitive detection of amino-triazole and linuron herbicides. Environ Res, 204,(2022)111856. https://doi.org/10.1016/j.envres.2021.111856
[62] G.E. Uwaya, Y. Wen, K. Bisetty, A combined experimental-computational approach for electrocatalytic detection of epinephrine using nanocomposite sensor based on polyaniline/nickel oxide. J Electroanal Chem, 911(2022) 116204. https://doi.org/10.1016/j.jelechem.2022.116204
[63] C.S. Kushwaha, V.K. Singh, S.K. Shukla, Electrochemically triggered sensing and recovery of mercury over sodium alginate grafted polyaniline. New J Chem, 45(24),(2021) 10626-10635. https://doi.org/10.1039/D1NJ01103K
[64] N. Yadav, A.K. Singh, Talha Bin Emran, R.G. Chaudhary, R. Sharma, S. Sharma, K. Barman, Salicylic acid treatment reduces lipid peroxidation, chlorophyll degradation and preserves quality attributes of pointed gourd fruit, J Food Qual, (2022) 2090562 https://doi.org/10.1155/2022/2090562
[65] R. Grillo, A.E.S. Pereira, C.S. Nishisaka, R. De Lima, K. Oehlke, R. Greiner, L.F. Fraceto, Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: An environmentally safer alternative for weed control. J. Hazard. Mater. 278,(2014) 163-171. https://doi.org/10.1016/j.jhazmat.2014.05.079
[66] N. Kottegoda, C. Sandaruwan, G. Priyadarshana, A. Siriwardhana, U.A. Rathnayak, D.M. BerugodaArachchige, A.R. Kumarasinghe, D. Dahanayake, V. Karunaratne, G.A. Amaratunga, Urea-hydroxyapatite nanohybrids for slow release of nitrogen, ACS Nano, 11,(2017)1214-1221. https://doi.org/10.1021/acsnano.6b07781
[67] N. Madusank, C. Sandaruwan, N. Kottegoda, D. Sirisena, I. Munaweera, A. De Alwis, V. Karunaratne, G.A. Amaratunga, Urea-hydroxyapatite-montmorillonite nanohybrid composites as slow release nitrogen compositions, Appl. Clay Sci., 150,(2017) 303-308. https://doi.org/10.1016/j.clay.2017.09.039
[68] A.A. Rajonee, S. Zaman, S.M.I. Huq, Preparation, characterization and evaluation of efficacy of phosphorus and potassium incorporated nano fertilizer, Adv. Nanopart., 6,(2017)62. https://doi.org/10.4236/anp.2017.62006
[69] H.M.A. Aziz, M.N. Hasaneen, A.M. Omer, Nano chitosan-NPK fertilizer enhances the growthand productivity of wheat plants grown in sandy soil, Span. J. Agric. Res., 14,(2016)17. https://doi.org/10.5424/sjar/2016141-8205
[70] G.B. Ram’ırez-Rodr’ıguez, C. Miguel-Rojas, G.S. Montanha, F.J. Carmona, G.D. Sasso, J.C. Sillero, J.S. Pedersen, N. Masciocchi, A. Guagliardi, P’erez-de-Luque, A. Reducing Nitrogen Dosage in Triticum durum Plants with Urea-Doped Nanofertilizers, Nanomaterials, 10,(2020)1043. https://doi.org/10.3390/nano10061043
[71] G.B. Ram’ırez-Rodr’ıgue, G. DalSasso, F.J. Carmona, C. Miguel-Rojas, A. P’erez-de-Luque, N. Masciocchi, A. Guagliardi, J.M. Delgado-L’opez, EngineeringBiomimetic Calcium Phosphate Nanoparticles: A Green Synthesis of Slow-Release Multinutrient(NPK) Nanofertilizers, ACS Appl. Bio Mater., 3,(2020) 1344-1353. https://doi.org/10.1021/acsabm.9b00937
[72] L. Azeez, A.L. Adejumo, O.M. Simiat, A. Lateef, Infuence of calcium nanoparticles (CaNPs) on nutritional qualities, radical scavenging attributes of Moringa oleifera and risk assessments on human health, J. Food Meas. Charact., 14, (2020)2185-2195. https://doi.org/10.1007/s11694-020-00465-6
[73] A. Abbasifar, F. Shahrabadi, B. ValizadehKaji, Effectsof green synthesized zinc and copper nano-fertilizers on the morphological and biochemical attributes of basil plant, J. Plant Nutr.,43,(2020)1104-1118. https://doi.org/10.1080/01904167.2020.1724305
[74] M.A. Mahmoud, H.M. Swaefy, Comparison between effect of commercial and nano NPK in presence of nano zeolite onsage plant yield and components under drought stress, J. Agric. Res., 47,(2020) 435-457. https://doi.org/10.21608/zjar.2020.94486
[75] T. Stadler, M. Buteler, S.R. Valdez, J.G. Gitto, Particulate nanoinsecticides: a new concept in insect pest management, Insecticides: Agriculture and Toxicology, 2018, 83. https://doi.org/10.5772/intechopen.72448
[76] M. Butele, G. Lopez Garcia, T. Stadler, Potential of nanostructured alumina for leaf-cutting ants Acromyrmexlobicornis (Hymenoptera: Formicidae) management, Austral Entomol., 57,(2018) 292-296. https://doi.org/10.1111/aen.12277
[77] M.E. El-Naggar, N.R. Abdelsalam, M.M. Fouda, M.I. Mackled, M.A. Al-Jaddadi, H.M. Ali, M.H. Siddiqui, E.E. Kandil, Soil Application of Nano Silica on Maize Yield and Its Insecticidal Activity Against Some Stored InsectsAferthePost-Harvest, Nanomaterials, 10,(2020)739. https://doi.org/10.3390/nano10040739
[78] A. Sherkhane, H. Suryawanshi, P. undada, B. Shinde, Control of bacterial blight disease of pomegranate using silver nanoparticles, J. Nanosci. Nanotechnol., 9,(2018) 1-5.
[79] S. Banik, A.P. Luque, In vitro effects of copper nanoparticles on plant pathogens, benefcialmicrobes and crop plants, Span. J. Agric. Res., 15(2),(2017) 1-15. https://doi.org/10.5424/sjar/2017152-10305
[80] G.F. Sousa, D.G. Gomes, E.V. Campos, J.L. Oliveira, L.F. Fraceto, R. Stolf-Moreira, H.C. Oliveira, Post- emergence herbicidal activity of nanoatrazine against susceptible weeds, Front. Environ. Sci., 6(12),(2018) 1-6. https://doi.org/10.3389/fenvs.2018.00012
[81] A. Taban, M.J. Saharkhiz, M. Khorram, Formulation and assessment of nano-encapsulated bioherbicides based on biopolymers and essential oil, Ind. Crops Prod., 149,(2020) 112348. https://doi.org/10.1016/j.indcrop.2020.112348