Application of Nanoparticles in Soil and Water Treatment
Azizul Hakim, Ferdouse Zaman Tanu, Hafiz Ashraful Haque, Md. Abu Bin Hasan Susan
Nanoparticles (NPs) exhibit size- and shape-dependent properties and may have distinctive colors that can be used in agriculture and biological applications as well as for physical and chemical studies. NPs have received significant attention in place of conventional bulk materials, and there has been an upsurge of interest in the exploitation of the unique features of NPs for soil and water treatment. In particular, nanoremediation is one of the most environmentally friendly techniques to use in soil, surface, and wastewater systems, especially with the expanding environmental pollution issues. The high surface-to-volume ratio of NPs results in a high absorption capacity for the remediation of contaminated soil and wastewater. This chapter focuses on the role of NPs in remediating polluted soil and water and the process of nanoremediation.
Keywords
Nanoparticles, Engineered Nanoparticles, Soil and Water, Wastewater, Heavy Metals, Contaminants
Published online , 23 pages
Citation: Azizul Hakim, Ferdouse Zaman Tanu, Hafiz Ashraful Haque, Md. Abu Bin Hasan Susan, Application of Nanoparticles in Soil and Water Treatment, Materials Research Foundations, Vol. 148, pp 229-251, 2023
DOI: https://doi.org/10.21741/9781644902554-8
Part of the book on Applications of Emerging Nanomaterials and Nanotechnology
References
[1] G. Shan, R.Y. Surampalli, R.D. Tyagi, T.C. Zhang, Nanomaterials for environmental burden reduction, waste treatment, and nonpoint source pollution control: a review, Frontiers of Environmental Science & Engineering in China. 3(3) (2009) 249-264. https://doi.org/10.1007/s11783-009-0029-0
[2] M. Loos, Chapter 1—nanoscience and nanotechnology, in: M. Loos (Eds.), Carbon nanotube reinforced composites, William Andrew Publishing, Oxford, 2015, pp. 1–36. https://doi.org/10.1016/B978-1-4557- 3195-4.00001-1
[3] G. Fang, Y. Si, C. Tian, G. Zhang, D. Zhou, Degradation of 2,4-D in soils by Fe3O4 nanoparticles combined with stimulating indigenous microbes, Environmental Science and Pollution Research. 19(3) (2012), 784-793. https://doi.org/10.1007/s11356-011-0597-y
[4] G. Fan, L. Cang, W. Qin, C. Zhou, H. Gomes, D. Zhou, Surfactants-enhanced electrokinetic transport of xanthan gum stabilized nanoPd/Fe for the remediation of PCBs contaminated soils, Separation and Purification Technology. 114 (2013), 64-72. https://doi.org/10.1016/j.seppur.2013.04.030
[5] T.E. Cloete, M. De Kwaadsteniet, M. Botes, Nanotechnology in water treatment applications, Caister Academic Press, Poole, U. K. (2010). https://doi.org/10.21775/9781910190098
[6] C. Fishman, The big thirst: The decret life and turbulent future of water, Free Press, New York (2011).
[7] H. Fereidoun, M.S. Nourddin, N.A. Rreza, A. Mohsen, R. Ahmad, H. Pouria, The effect of long-term exposure to particulate pollution on the lung function of Teheranian and Zanjanian students, Pakistan, J Physiol. 3 (2007), 1–5.
[8] M. Kampa, E. Castanas, Human health effects of air pollution, Environ Pollut. 151 (2008), 362–367. https://doi.org/10.1016/j.envpol.2007.06.012
[9] M. Houde, D.C.G. Muir, K.A. Kidd, S. Guildford, K. Drouillard, M.S. Evans, X. Wang, D.M. Whittle, D. Haffner, H. Kling, Influence of lake characteristics on the biomagnification of persistent organic pollutants in lake trout food webs, Environ Toxicol Chem. 27 (2008), 2169 –2178. https://doi.org/10.1897/08-071.1
[10] B.C. Kelly, M.G. Ikonomou, J.D. Blair, A.E. Morin, F.A.P.C. Gobas, Food web-specific biomagnification of persistent organic pollutants, Science. 317 (2007), 236 –239. https://doi.org/10.1126/science.1138275
[11] B. Kumar, D. Mukherjee, S. Kumar, M. Mishra, D. Prakash, S. Singh, C. Sharma, Bioaccumulation of heavy metals in muscle tissue of fishes from selected aquaculture ponds in east Kolkata wetlands, Ann Biol Res. 2 (2011), 125–134.
[12] T. Shahwan, Ç. Üzum, A. Eroğlu, I. Lieberwirth, Synthesis and characterization of bentonite/iron nanoparticles and their application as adsorbent of cobalt ions, Applied Clay Science, 47 (2010), 257-262. https://doi.org/10.1016/j.clay.2009.10.019
[13] T. Ben-Moshe, I. Dror, B. Berkowitz, Transport of metal oxide nanoparticles in saturated porous media, Chemosphere, 81(2010), 387-393. https://doi.org/10.1016/j.chemosphere.2010.07.007
[14] M. Khajeh, S. Laurent, K. Dastafkan, Nanoadsorbents: classification, preparation, and applications (with emphasis on aqueous me- dia), Chem Rev. 113 (2013), 7728–7768. https://doi.org/doi.org/10.1021/cr400086v
[15] A. Husen, K.S. Siddiqi, Phytosynthesis of nanoparticles: concept, controversy and application, Nanoscale Res. Lett. 9 (2014), 229. https://doi.org/10.1186/1556-276X-9-229
[16] A. Husen, M. Iqbal, Nanomaterials and plant potential: an overview, in: A. Husen, M. Iqbal (Eds.), Nanomaterials and Plant Potential. Springer International Publishing AG, Cham, Switzerland, 2019. pp. 329.
[17] P.V. Kamat, D. Meisel, Nanoscience opportunities in environmental remediation, Comptes Rendus Chimie. 6:8-10 (2003), 999-1007. https://doi.org/10.1016/j.crci.2003.06.005
[18] R. Feynman, There’s plenty of room at the bottom (reprint from speech given at annual meeting of the American Physical Society. Eng. Sci, 23 (1960), 22–36.
[19] D. Schaming, H. Remita, Nanotechnology: From the ancient time to nowadays. Found. Chem, 17 (2015), 187-205. https://doi.org/10.1007/s10698-015-9235-y
[20] N. Taniguchi, On the basic concept of ‘‘nano-technology’’, in: Proceedings of International Conference on Production Engineering, Tokyo, Part II, Japan Society of Precision Engineering (1974).
[21] J.C. Glenn, Nanotechnology: Future military environmental health considerations, Technol. Forecast, Soc. Chang. 73 (2006), 128–137. https://doi.org/10.1016/j.techfore.2005.06.010
[22] E.K. Drexler, Engines of Creation: The Coming Era of Nanotechnology; Anchor Books, Doubleday: New York, NY, USA, (1986), ISBN 0-385-19973-2.
[23] G. Binnig, H. Rohrer, Scanning tunneling microscopy, Surf. Sci. 126 (1983), 236–244. https://doi.org/10.1016/0039-6028(83)90716-1
[24] G. Binnig, C.F. Quate, C. Gerber, Atomic Force Microscope, Phys. Rev. Lett. 56 (1986), 930–933. https://doi.org/10.1103/PhysRevLett.56.930
[25] G. Rytwo, Clay minerals as an ancient nanotechnology: historical uses of clay organic interactions, and future possible perspectives. Macla. 9 (2008), 15–17. https://doi.org/10.13140/2.1.4481.0884
[26] J. Delgado, M. Vilarigues, A. Ruivo, V. Corregidor, R.C. da Silva, L.C. Alves, Characterization of medieval yellow silver stained glass from Convento de Cristo in Tomar, Portugal, Nucl. Instrum. Methods B. 269 (2011), 2383–2388. https://doi.org/10.1016/j.nimb.2011.02.059
[27] P. Colomban, The use of metal nanoparticles to produce yellow, red and iridescent colour, from Bronze age to present times in lustre pottery any glass: solid state chemistry, spectroscopy and nanostructure, J. Nano Res. 8 (2009), 109–132. https://doi.org/10.4028/www.scientific.net/JNanoR.8.109
[28] J. Belloni, The role of silver clusters in photography, C.R. Phys. 3 (2002), 381–390. https://doi.org/10.1016/S1631-0705(02)01321-X
[29] J. Fatisson, S. Ghoshal, N. Tufenkji, Deposition of carboxymethylcellulose-coated zero-valent iron nanoparticles onto Silica: Roles of Solution Chemistry and Organic Molecules, Langmuir, 26(15), (2010), 12832-12840. https://doi.org/10.1021/la1006633
[30] Y. Bao, J. He, K. Song, J. Guo, X. Zhou, S. Liu, Plant-extract-mediated synthesis of metal nanoparticles, J. Chem. (2021), 6562687. https://doi.org/10.1155/2021/6562687
[31] R. Kuhn, I. M. Bryant, R. Jensch, J. Böllmann, Applications of environmental nanotechnologies in remediation, wastewater treatment, drinking water treatment, and Agriculture, Appl. Nano. 3 (2022), 54–90. https://doi.org/10.3390/applnano3010005
[32] M. Naghdi, S. Metahni, Y. Ouarda, S.K. Brar, R.K. Das, M. Cledon, Instrumental approach toward understanding nano-pollutants, Nanotechnol, Environ. Eng. 2:3 (2017). https://doi.org/10.1007/s41204-017-0015-x
[33] T. Ma, Y. Sheng, Y. Meng, J. Sun, Multistage remediation of heavy metal contaminated river sediments in a mining region based on particle size, Chemosphere. 225 (2019), 83–92. https://doi.org/10.1016/j.chemosphere.2019.03.018
[34] Y. Lin, F. Meng, Y. Du, Y. Tan, Distribution, speciation, and ecological risk assessment of heavy metals in surface sediments of Jiaozhou Bay, China, Hum. Ecol. Risk Assess. Int. J. 22 (2016), 1253–1267. https://doi.org/10.1080/10807039.2016.1159503
[35] S. Das, B. Sen, N. Debnath, Recent trends in nanomaterials applications in envi ronmental monitoring and remediation, Environ, Sci. Pollut. Res. Int. 22 (2015). 18333-18344. https://doi.org/10.1007/s11356-015-5491-6
[36] P.G. Tratnyek, R.L. Johnson, Nanotechnologies for environmental clean-up, Nano Today 1 (2006), 44-48. https://doi.org/10.1016/S1748-0132(06)70048-2
[37] A. Mondal, B.K. Dubey, M. Arora, K. Mumford, Porous media transport of iron nanoparticles for site remediation application: A review of lab scale column study, transport modelling and field-scale application, J. Hazard. Mater. 403 (2021), 123443. https://doi.org/10.1016/j.jhazmat.2020.123443
[38] X. Zhao, W. Liu, Z. Cai, B. Han, T. Qian, D. Zhao, An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation, Water Res. 100 (2016), 245–266. https://doi.org/10.1016/j.watres.2016.05.019
[39] Q. Abbas, B. Yousaf, A. Muhammad, U. Ali, M. Ahmed, M. Munir, A. El-Naggar, J. Rinklebe, M. Naushad, Transformation pathways and fate of engineered nanoparticles (ENPs) in distinct interactive environmental compartments: A review, Environmental International 138, (2020), 105646. https://doi.org/10.1016/j.envint.2020.105646
[40] F. Guerra, M. Attia, D. Whitehead, F. Alexis, Nanotechnology for environmental remediation: materials and applications, Molecules 23(7), (2018), 1760. https://doi.org/10.3390/molecules23071760
[41] H.Y. Huang, R.T. Yang, D. Chinn, C.L. Munson, Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas, Ind. Eng. Chem. Res. 42 (2003), 2427-2433. https://doi.org/10.1021/ie020440u
[42] A. Nomura, C.W. Jones, Amine-functionalized porous silicas as adsorbents for aldehyde abatement, ACS App. Mat. Interf. 5 (2013), 5569-5577. https://doi.org/10.1021/am400810s
[43] C.H. Tsai, W.C. Chang, D. Saikia, C.E. Wu, H.M. Kao, Functionalization of cubic mesoporous silica SBA-16 with carboxylic acid via one-pot synthesis route for effective removal of cationic dyes, J. Hazard. Mat. 309 (2016), 236-248. https://doi.org/10.1016/j.jhazmat.2015.08.051
[44] S. Wang, K. Wang, C. Dai, H. Shi, J. Li, Adsorption of Pb2+ on amino- functionalized coreshell magnetic mesoporous SBA-15 silica composite, Chem. Eng. J. 262 (2015), 897-903. https://doi.org/10.1016/j.cej.2014.10.035
[45] D. Lei, Q. Zheng, Y. Wang, H. Wang, Preparation and evaluation of aminopropyl- functionalized manganese-loaded SBA-15 for copper removal from aqueous solution, J. Environ. Sci. 28 (2015), 118-127. https://doi.org/10.1016/j.jes.2014.06.045
[46] C.H. Deng, J.L. Gong, P. Zhang, G.M. Zeng, B. Song, H.Y. Liu, Preparation of melamine sponge decorated with silver nanoparticles-modified graphene for water disinfection, J. Colloids Interf. Sci. 488 (2017), 26-38. https://doi.org/10.1016/j.jcis.2016.10.078
[47] C.R. Chinnamuthu, P.M. Boopathi, Nanotechnology and agro-ecosystem. Madras Agric. J. 96 (2009), 17-31.
[48] R. Prasad, V. Kumar, K.S. Prasad, Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr. J. Biotechnol. 13 (2014), 705-713.
[49] K.S. Yao, S. Li, K. Tzeng, T.C. Cheng, C.Y. Chang, C. Chiu et al., Fluorescence silica nanoprobe as a biomarker for rapid detection of plant pathogens. Adv. Mat. Res. 79-82 (2009), 513-516. https://doi.org/10.4028/www.scientific.net/AMR.79-82.513
[50] N. Chartuprayoon, Y. Rheem, W. Chen, N.V. Myung, Detection of plant pathogen using LPNE grown single conducting polymer nanoribbon, in: Proceedings of the 218th ECS Meeting, Las Vegas, NV, October 10-15, (2010), pp. 22-78.
[51] M.S. Diallo, C.J. Glinka, W.A. Goddard, J.H. Jhonson, Characterization of nanoparticles and colloids in aquatic systems 1. Small angle neutron scattering investigations of Suwannee River fulvic acid aggregates in aqueous solutions, J. Nanoparticle Res. 7(4-5), (2005), 435-448. https://doi.org/10.1007/s11051-005-7524-4
[52] N.M. Nagy, J. Konya, M. Beszeda et al., Physical and Chemical formation of lead contaminants in clay and sediment, J. Colloid Interface Sci. 263 (1), (2003), 13-22. https://doi.org/10.1016/S0021-9797(03)00284-4
[53] A.B.A. Boxall, K. Tiede, Q. Chaudhry, Engineered nanomaterials in soils and water: how do they behave and could they pose a risk to human health?, Nanomedicine. 2(6), (2007), 919-927. https://doi.org/10.2217/17435889.2.6.919
[54] A. Hakim, T. Suzuki, M. Kobayashi, Strength of humic acid aggregates: Effects of divalent cations and solution pH, ACS Omega. 4(5), (2019), 8559–8567. https://doi.org/10.1021/acsomega.9b00124
[55] A. Hakim, M. Kobayashi, Charging, aggregation, and aggregate strength of humic substances in the presence of cationic surfactants: Effects of humic substances hydrophobicity and surfactant tail length, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 577 (2019), 175-184. https://doi.org/10.1016/j.colsurfa.2019.05.071
[56] A. Hakim, M. Kobayashi, Aggregation and charge reversal of humic substances in the presence of hydrophobic monovalent counter-ions: effect of hydrophobicity of humic substances, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 540 (2018), 1-10. https://doi.org/10.1016/j.colsurfa.2017.12.065
[57] W.K.W.A. Khodir, A. Hakim, M. Kobayashi, Strength of flocs formed by the complexation of lysozyme with leonardite humic acid, Polymers. 12(8):1770 (2020). https://doi.org/10.3390/polym12081770
[58] A. Hakim, M. Kobayashi, Aggregation and aggregate strength of microscale plastic particles: effects of ionic valance, J. Polymers Environ. 29 (2021), 1921-1929. https://doi.org/10.1007/s10924-020-01985-4
[59] K. Omija, A. Hakim, K. Masuda, A. Yamaguchi, M. Kobayashi, Effect of counter ion valence and pH on the aggregation and charging of oxidized carbon nanohorn (CNHox) in aqueous solution, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 619 (2021), 126552. https://doi.org/10.1016/j.colsurfa.2021.126552
[60] J.A. Brant, J. Labille, C. Ogilvie Robichaud, M. Wiesner, Fullerol cluster formation in aqueous solutions: implications for environmental release, J. Colloid Interface Sci. 314(1), (2007), 281-288. https://doi.org/10.1016/j.jcis.2007.05.020
[61] B. Liu, S.Q. Jian, W.D. Zhang, F. Ye, Y.H. Wang, J. Wu, D.Y. Zhang, Novel biodegradable HSAM nanoparticle for drug delivery, Oncol. Rep. 15(4), (2006), 957-961. https://doi.org/10.3892/or.15.4.957
[62] M.B. Mensah, D.J. Lewis, N.O. Boadi, J.A.M. Awudza, Heavy metal pollution and the role of inorganic nanomaterials in environmental remediation. Royal society open science 8(10), (2021), 201485. https://doi.org/10.1098/rsos.201485
[63] S.B. Lovern, R. Klaper, Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles, Environ. Toxicol. Chem. 25(4), (2006), 1132-1137.
[64] N. Lubick, Nanosilver toxicity: ions, nanoparticles—or both? Environ. Sci. Technol. 2008, 42, 23, 8617. https://doi.org/10.1021/es8026314
[65] J. Fang, D.Y. Lyon, M.R. Wiesner, J. Dong, P.J.J. Alvarez, Effect of a fullerene water suspension on bacterial phospholipids and membrane phase behaviour, Environ. Sci. Technol. 41:7 (2007), 2636-2642. https://doi.org/10.1021/es062181w
[66] Z. Tong, M. Bischoff, L. Nies, B. Applegate, R.F. Turco, Impact of fullerene (C60) on a soil microbial community, Environ. Sci. Technol. 41:8 (2007), 2985-2991. https://doi.org/10.1021/es061953l
[67] Q.Y. Ma, S.J. Traina, T.J. Logan, J.A. Ryan, In situ Pb immobilization by apatite, Environ Sci Technol. 27:9 (1993), 1803-1810. https://doi.org/10.1021/es00046a007
[68] S.P. Singh, L.Q. Ma, W.G. Harris, Heavy metal interactions with phosphatic clay: sorption and desorption behaviour. J Environ Qual. 30 (2001), 1961-1968. https://doi.org/10.2134/jeq2001.1961
[69] J. Kumpiene, A. Lagerkvist, C. Maurice, Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—a review, Waste Manag. 28 (2008), 215–225. https://doi.org/10.1016/j.wasman.2006.12.012
[70] B.H. Robinson, G. Bañuelos, H.M. Conesa, M.W.H. Evangelou, R. Schulin, The phytomanagement of trace elements in soil, Crit. Rev. Plant Sci. 28 (2009), 240–266. https://doi.org/10.1080/07352680903035424
[71] F. He, D. Zhao, Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water, Environ. Sci. Technol. 39 (2005), 3314–3320. https://doi.org/10.1021/es048743y
[72] F. He, D. Zhao, Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers, Environ. Sci. Technol. 41 (2007), 6216–6221. https://doi.org/10.1021/es0705543
[73] Q. Liang, D. Zhao, Immobilization of arsenate in a sandy loam soil using starch-stabilized magnetite nanoparticles, J. Hazard Mater. 271 (2014), 16–23. https://doi.org/10.1016/j.jhazmat.2014.01.055
[74] J. Yang, D.E. Mosby, S.W. Casteel, R.W. Blanchar, Lead immobilization using phosphoric acid in a smelter-contaminated urban soil, Environ. Sci. Technol. 35 (2001), 3553–3559. https://doi.org/10.1021/es001770d
[75] R. Liu, D. Zhao, Synthesis and characterization of a new class of stabilized apatite nanoparticles and applying the particles to in situ Pb immobilization in a fire-range soil, Chemosphere, 91 (2013), 594–601. https://doi.org/10.1016/j.chemosphere.2012.12.034
[76] D. Baragano, R. Forjan, L. Welte, J.L.R. Gallego, Nanoremediation of As and metals polluted soils by means of graphene oxide nanoparticles, Sci Rep 10, 1896 (2020). https://doi.org/10.1038/s41598-020-58852-4
[77] L.A. Reyhanitabar, A. Khataee, S. Oustan, Application of stabilized Fe0 nanoparticles for remediation of Cr (VI)-spiked soil, Eur J Soil Sci. 63 (2012), 724–732. https://doi.org/10.1111/j.1365-2389.2012.01447.x
[78] Z. Fang, X. Qiu, J. Chen, X. Qiu, Debromination of polybrominated diphenyl ethers by Ni/Fe bimetallic nanoparticles: influencing fac- tors, kinetics, and mechanism, J Hazard Mater. 185 (2011), 958–969. https://doi.org/10.1016/j.jhazmat.2010.09.113
[79] S.S. Chen, H.D. Hsu, C.W. Li, A new method to produce nanoscale iron for nitrate removal, J Nanoparticle Res. 6 (2004), 639–647. https://doi.org/10.1007/s11051-004-6672-2
[80] Y. Wang, Z. Fang, B. Liang, E.P. Tsang, Remediation of hexavalent chromium contaminated soil by stabilized nanoscale zero-valent iron prepared from steel pickling waste liquor, Chem Eng J. 247 (2014), 283–290. https://doi.org/10.1016/j.cej.2014.03.011
[81] J.H. Park, N. Bolan, M. Megharaj, R. Naidu, Comparative value of phosphate sources on the immobilization of lead, and leaching of lead and phosphorus in lead contaminated soils, Sci Total Environ. 409:4 (2011), 853-860. https://doi.org/10.1016/j.scitotenv.2010.11.003
[82] Y. Xu, D. Zhao, Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles, Water Res. 41 (2007), 2101–2108. https://doi.org/10.1016/j.watres.2007.02.037
[83] Y. Wang, Z. Fang, Y. Kang, E.P. Tsang, Immobilization and phyto- toxicity of chromium in contaminated soil remediated by CMC- stabilized nZVI, J Hazard Mater. 275 (2014), 230-237. https://doi.org/10.1016/j.jhazmat.2014.04. 056
[84] D.L. Slomberg, M.H. Schoenfisch, Silica nanoparticle phytotoxicity to Arabidopsis thaliana, Environ Sci Technol. 46 (2012), 10247–10254. https://doi.org/10.1021/es300949f
[85] X. Qu, J. Brame, Q. Li, P.J.J. Alvarez, Nanotechnology for a safe and sustainable water supply: enabling integrated water treatment and reuse, Acc Chem Res. 46 (2013), 834–843. https://doi.org/10.1021/ar300029v
[86] K. Engates, H. Shipley, Adsorption of Pb, Cd, Cu, Zn, and Ni to titanium dioxide nanoparticles: effect of particle size, solid concentration, and exhaustion, Environ Sci Pollut Res. 18 (2011), 386–395. https://doi.org/10. 1007/s11356-010-0382-3
[87] M. Kilianová, R. Prucek, J. Filip, J. Kolarik, L. Kvitek, A. Panacek, J. Tucek, R. Zboril, Remarkable efficiency of ultrafine superparamagnetic iron(III) oxide nanoparticles toward arsenate removal from aqueous environment, Chemosphere. 93 (2013), 2690–2697. https://doi.org/10.1016/j.chemosphere.2013.08.071
[88] X. Xin, Q. Wei, J. Yang, L. Yan, R. Feng, G. Chen, B. Du, H. Li, Highly efficient removal of heavy metal ions by amine functionalized mesoporous Fe3O4 nanoparticles, Chem Eng J. 184 (2012), 132–140. https://doi.org/10.1016/j.cej.2012.01.016
[89] J. Wang, Z. Li, S. Li, W. Qi, P. Liu, F. Liu, Y. Ye, L. Wu, L. Wang, W. Wu, Adsorption of Cu(II) on oxidized multi-walled carbon nanotubes in the presence of hydroxylated and carboxylated fullerenes, PLoS ONE. 8:8 (2013), e72475. https://doi.org/10.1371/journal.pone. 0072475
[90] R. Balamurugan, S. Sundarrajan, S. Ramakrishna, Recent trends in nanofibrous membranes and their suitability for air and water filtrations, Membranes. 1 (2011), 232–248. https://doi.org/10.3390/membranes1030232
[91] M.G. Buonomenna, Membrane processes for a sustainable industrial growth, RSC Advances 3 (2013), 5694 -5740. https://doi.org/10.1039/ C2RA22580H
[92] H.L. Yang, J.C.T. Lin, C. Huang, Application of nanosilver surface modification to RO membrane and spacer for mitigating biofouling in seawater desalination, Water Res. 43 (2009), 3777–3786. https://doi.org/10.1016/j. watres.2009.06.002
[93] P. Bernardo, E. Drioli, G. Golemme, Membrane gas separation: a review/state of the art, Ind Eng Chem Res. 48 (2009), 4638–4663. https://doi.org/10.1021/ie8019032
[94] TE Cloete, M de Kwaadsteniet, M Botes and JM Lopez-Romero, Nanotechnology in water treatment applications. Caister Academic Press, New York (2010).
[95] X. Li, C. Zhang, R. Zhao, X. Lu, X. Xu, X. Jia, C. Wang, L. Li, Efficient adsorption of gold ions from aqueous systems with thioamide-group chelating nanofiber membranes, Chem Eng J. 229 (2013), 420–428. https://doi.org/10.1016/j.cej.2013.06.022
[96] S. Ramakrishna, K. Fujihara, W.E. Teo, T. Yong, Z. Ma, R. Ramaseshan, Electrospun nanofibers: solving global issues, Mater Today. 9 (2006), 40–50. https://doi.org/10.1016/S1369-7021(06)71389-X
[97] R. Gopal, S. Kaur, Z. Ma, C. Chan, S. Ramakrishna, T. Matsuura, Electrospun nanofibrous filtration membrane, J Membr Sci. 281 (2006), 581–586. https://doi.org/10.1016/j.memsci.2006.04.026
[98] R. Gopal, S. Kaur, C.Y. Feng, C. Chan, S. Ramakrishna, S. Tabe, T. Matsuura, Electrospun nanofibrous polysulfone membranes as prefilters: particulate removal, J Membr Sci. 289 (2007), 210–219. https://doi.org/10.1016/j.memsci.2006.11.056
[99] X. Qu, P.J.J. Alvarez, Q. Li, Applications of nanotechnology in water and wastewater treatment, Water Res. 47 (2013), 3931–3946. https://doi.org/10. 1016/j.watres.2012.09.058
[100] M. Arshadi, H. Firouzabadi, A. Abbaspourrad, Adsorption of mercury ions from wastewater by a hyperbranched and multi-functionalized dendrimer modified mixed-oxides nanoparticles, J. Colloid Interface Sci. 505, (2017), 293-306. (https://doi.org/10.1016/j.jcis.2017.05.052).
[101] Z. Ma, M. Kotaki, S. Ramakrishna, Electrospun cellulose nanofiber as affinity membrane, J Membr Sci. 265 (2005), 115–123. https://doi.org/10.1016/j. memsci.2005.04.044
[102] S. Kaur, M. Kotaki, Z. Ma, R. Gopal, S. Ramakrishna, S.C. NG, Oligosaccharide functionalized nanofibrous membrane, Int J Nanosci. 5:1 (2006), 1–11. https://doi.org/10.1142/S0219581X06004206
[103] F. Meng, S.R. Chae, A. Drews, M. Kraume, H.S. Shin, F. Yang, Recent advances in membrane bioreactors (MBRs): membrane fouling and membrane material, Water Res. 43 (2009), 1489–1512. https://doi.org/10.1016/ j.watres.2008.12.044
[104] S. Ciston, R.M. Lueptow, K.A. Gray, Controlling biofilm growth using reactive ceramic ultrafiltration membranes, J Membr Sci. 342 (2009), 263–268. https://doi.org/10.1016/j.memsci.2009.06.049
[105] I. Sawada, R. Fachrul, T. Ito, Y. Ohmukai, T. Maruyama, H. Matsuyama, Development of a hydrophilic polymer membrane containing silver nanoparticles with both organic antifouling and antibacterial properties, J Membr Sci. 387–388 (2012), 1–6. https://doi.org/10.1016/j.memsci. 2011.06.020
[106] A. Rahimpour, UV photo-grafting of hydrophilic monomers onto the surface of nano-porous PES membranes for improving surface properties, Desalination. 265 (2011), 93–101. https://doi.org/10.1016/j.desal.2010.07. 037
[107] R.K. Ibrahim, M. Hayyan, M.A. AlSaadi, A. Hayyan, S. Ibrahim, Environmental Application of nanotechnology: Air, soil and water, Environ Sci Pollut Res. 23 (2016), 13754–13788. https://doi.org/10.1007/s11356-016-6457-z
[108] J.N. Shen, H.M. Ruan, L.G. Wu, C.J. Gao, Preparation and characterization of PES–SiO2 organic–inorganic composite ultrafiltration membrane for raw water pretreatment, Chem Eng J. 168 (2011), 1272– 1278. https://doi.org/10.1016/j.cej.2011.02.039
[109] K. Zodrow, L. Brunet, S. Mahendra, D. Li, A. Zhang, Q. Li, P.J.J. Alvarez, Polysulfone ultrafiltration membranes impregnated with sil- ver nanoparticles show improved biofouling resistance and virus removal, Water Res. 43 (2009), 715–723. https://doi.org/10.1016/j.watres.2008.11.014
[110] L. Obalová, M. Reli, J. Lang, V. Matějka, J. Kukutschová, Z. Lacný, K. Kočí, Photocatalytic decomposition of nitrous oxide using TiO2 and Ag-TiO2 nanocomposite thin films, Catal Today. 209 (2013), 170– 175. https://doi.org/10.1016/j.cattod.2012.11.012
[111] G. Wu, S. Gan, L. Cui, Y. Xu, Preparation and characterization of PES/TiO2 composite membranes, Appl Surf Sci. 254 (2008), 7080–7086. https://doi.org/10.1016/j.apsusc.2008.05.221