Production of Nanomaterials from Forest Resources
M. Mahbubur Rahman, M. Mostafizur Rahman, Md. Abu Bin Hasan Susan, M. Sarwar Jahan
Renewable resources such as lignocellulose are prospective alternatives for the development of different products in connection with climate change. Cellulose, lignin, and hemicellulose can be extracted from wood and non-wood through a chemical process, subsequently, nanocellulose, nanolignin, and nanohemicellulose can be obtained through mechanical, chemical, and a combination of these two processes. Nanocellulose is suggested for application in improving barrier properties, drug delivery, energy storage, composite film, scaffolds for tissue regeneration, and other smart materials due to its nanoscale dimension, hydrogen bond formation capability, and high surface area. This chapter presents various methods for the extraction of lignin nanoparticles and their applications. Due to the high reactivity, large surface area, and homogeneity, nanolignin is applied in the preparation of nanocomposites, and so far, various thermally stable composites have been suggested. Though very little information is available on nanohemicellulose, it is a very promising nanomaterial from forest resources to show a definite improvement in the tensile strength of biofilm.
Keywords
Lignocellulose, Nanocellulose, Nanolignin, Nanohemicellulose, Barrier Properties, Biofilm
Published online , 29 pages
Citation: M. Mahbubur Rahman, M. Mostafizur Rahman, Md. Abu Bin Hasan Susan, M. Sarwar Jahan, Production of Nanomaterials from Forest Resources, Materials Research Foundations, Vol. 148, pp 200-228, 2023
DOI: https://doi.org/10.21741/9781644902554-7
Part of the book on Applications of Emerging Nanomaterials and Nanotechnology
References
[1] I. Siró, D. Plackett, Microfibrillated cellulose and new nanocomposite materials: a review, Cellulose 17(3) (2010) 459-494. https://doi.org/10.1007/s10570-010-9405-y
[2] Y. Habibi, L. A. Lucia, O. J. Rojas, Cellulose nanocrystals: chemistry, self-assembly and applications, Chemical Reviews, 110(6) (2010) 3479-3500. https://doi.org/10.1021/cr900339w
[3] H. Zhu, Z. Jia, Y. Chen, N. Weadock, J. Wan, O. Vaaland, Hu, L, Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir, Nano Letters 13(7) (2013) 3093-3100. https://doi.org/10.1021/nl400998t
[4] M.M. Haque, Y. Ni, A. J. U. Akon, M.A. Quaiyyum, M.S. Jahan, A review on Acacia auriculiformis: importance as pulpwood planted in social forestry, International Wood Products Journal 12(3) pp.194-205. https://doi.org/10.1080/20426445.2021.1949107
[5] L. C. Malucelli, L. G. Lacerda, M. Dziedzic, da Silva, M. A. C. Filho, Preparation, properties and future perspectives of nanocrystals from agro-industrial residues: a review of recent research, Reviews in Environmental Science and Bio/Technology, 16 131-145. https://doi.org/10.1007/s11157-017-9423-4
[6] M. S. Jahan, A. Al-Maruf, M. A. Quaiyyum, Comparative studies of pulping of jute fiber, jute cutting and jute caddis, Bangladesh Journal of Scientific and Industrial Research 42(4) 425-434. https://doi.org/10.3329/bjsir.v42i4.750
[7] T. Ferdous, M. A. Quaiyyum, A. Salam, M. S. Jahan, Pulping of bagasse (Saccrarum officinarum), kash (Saccharum spontaneum) and corn stalks (Zea mays), Current Research in Green and Sustainable Chemistry, 3, 100017. https://doi.org/10.1016/j.crgsc.2020.100017
[8] T. Ferdous, M.A. Quaiyyum, S. Bashar, and M.S. Jahan, Anatomical, morphological and chemical characteristics of kaun straw (Seetaria-ltalika), Nordic Pulp and Paper Research Journal, 35(2) pp.288-298. https://doi.org/10.1515/npprj-2019-0057
[9] D. Klemm, F. Kramer, S. Moritz, T. Lindström, M. Ankerfors, D. Gray, A. Dorris, NCs: a new family of nature based materials, Angewandte Chemie International Edition, 50(24) (2011) 5438-5466. https://doi.org/10.1002/anie.201001273
[10] A. Saeed, M. S. Jahan, H. Li, Z. Liu, Y. Ni, A. van Heiningen, Mass balances of components dissolved in the pre-hydrolysis liquor of kraft-based dissolving pulp production process from Canadian hardwoods, Biomass and Bioenergy 39 (2012) 14-19. https://doi.org/10.1016/j.biombioe.2010.08.039
[11] L. Ahsan, M. S. Jahan, Y. Ni, Recovering/concentrating of hemicellulosic sugars and acetic acid by nanofiltration and reverse osmosis from prehydrolysis liquor of kraft based hardwood dissolving pulp process, Bioresource Technology, 155 (2014) 111-115. https://doi.org/10.1016/j.biortech.2013.12.096
[12] H. Liu, H. Hu, M. S. Jahan, Y. Ni, Furfural formation from the pre-hydrolysis liquor of a hardwood kraft-based dissolving pulp production process, Bioresource Technology, 131 (2013) 315-320. https://doi.org/10.1016/j.biortech.2012.12.158
[13] M. M. Rahman, R. S. Popy, J. Nayeem, K. M. Y. Arafat, M. S. Jahan, Dissolving pulp and furfural production from jute stick. Nordic Pulp and Paper Research Journal 37(4) (2022) 586-592. https://doi.org/10.1515/npprj-2022-0046
[14] P. Balaguru, K. Chong, Nanotechnology and concrete: research opportunities. Proceedings of the ACI session on nanotechnology of concrete: recent developments and future perspectives, (2006) 15-28.
[15] J. H. Thrall, Nanotechnology and medicine, Radiology, 230(2) (2004) 315-318. https://doi.org/10.1148/radiol.2302031698
[16] S. M. Moghimi, A. C. Hunter, J. C. Murray, Nanomedicine: current status and future prospects, The FASEB Journal, 19(3) (2005) 311-330. https://doi.org/10.1096/fj.04-2747rev
[17] S. M. Mukherjee, H. J. Woods X-ray and electron microscope studies of the degradation of cellulose by sulphuric acid, Biochimica et Biophysica Acta, 10 (1953) 499-511. https://doi.org/10.1016/0006-3002(53)90295-9
[18] B. G. Ranby, Aqueous colloidal solutions of cellulose micelles, Acta Chemica Scandinavica 3(5) (1949) 649-650.
[19] B. G. Rånby, Fibrous macromolecular systems. Cellulose and muscle. The colloidal properties of cellulose micelles, Discussions of the Faraday Society 11 (1951) 158-164. https://doi.org/10.1039/DF9511100158
[20] M. S. Jahan, D. N. Chowdhury, M. K. Islam, Atmospheric formic acid pulping and TCF bleaching of dhaincha (Sesbaniaaculeata), kash (Saccharumspontaneum) and banana stem (Musa Cavendish), Industrial Crops and Products 26(3) (2007) 324-331. https://doi.org/10.1016/j.indcrop.2007.03.012
[21] M. Nuruddin, A. Chowdhury, S. A. Haque, M. Rahman, S. F. Farhad, M. S. Jahan, A. Quaiyyum, Extraction and characterization of cellulose microfibrils from agricultural wastes in an integrated biorefinery initiative, Biomaterials 3 (2011) 5-6.
[22] M. S. Jahan, A. Saeed, Z. He, Y. Ni, Jute as raw material for the preparation of microcrystalline cellulose, Cellulose 18(2) (2011) 451-459. https://doi.org/10.1007/s10570-010-9481-z
[23] H. Gu, R. Reiner, R. Bergman, A. Rudie, LCA study for pilot scale production of cellulose nano crystals (CNC) from wood pulp, Proceedings from the LCA XV Conference, A bright green future 6-8 October 2015 Vancouver, British Columbia, Canada P. 33-42.
[24] H. Wang, J. J. Zhu, Q. Ma, U. P. Agarwal, R. Gleisner, R. Reiner, J. Y. Zhu, Pilot-scale production of cellulosic nanowhiskers with similar morphology to cellulose nanocrystals, Frontiers in Bioengineering and Biotechnology 8(2020)565084. https://doi.org/10.3389/fbioe.2020.565084
[25] https://celluforce.com/about-celluforce/ accessed on 6 February 2023.
[26] A. J. Ragauskas, G. T. Beckham, M. J. Biddy, R. Chandra, F. Chen, M. F. Davis, C. E. Wyman, Lignin valorization: improving lignin processing in the biorefinery, Science, 344(6185) (2014)1246843. https://doi.org/10.1126/science.12468
[27] O. Nechyporchuk, M. N. Belgacem, J. Bras, Production of cellulose nanofibrils: A review of recent advances, Industrial Crops and Products 93(2016), 2-25. https://doi.org/10.1016/j.indcrop.2016.02.016
[28] R. J Moon, A. Martini, J. Nairn, J. Simonsen, J.Youngblood, Cellulose nanomaterials review: structure, properties and nanocomposites, Chemical Society Reviews 40(7) (2011) 3941-3994. https://doi.org/10.1039/C0CS00108B
[29] H. A. Khalil, A. H. Bhat, A. I. Yusra, Green composites from sustainable cellulose nanofibrils: A review, Carbohydrate Polymers 87(2) (2012) 963-979. https://doi.org/10.1016/j.carbpol.2011.08.078
[30] N. Lavoine, I. Desloges, A. Dufresne, J. Bras, Microfibrillated cellulose–Its barrier properties and applications in cellulosic materials: A review, Carbohydrate Polymers 90(2) (2012) 735-764. https://doi.org/10.1016/j.carbpol.2012.05.026
[31] D. Trache, M. H. Hussin, M. M. Haafiz, V. K. Thakur, Recent progress in cellulose nanocrystals: sources and production, Nanoscale 9(5) (2017) 1763-1786. https://doi.org/10.1039/C6NR09494E
[32] G. Chauve, J. Bras, Industrial point of view of nanocellulose materials and their possible applications, In Handbook of Green Materials: 1 Bionanomaterials: separation processes characterization and properties, (2014) (pp.233-252). https://doi.org/10.1142/9789814566469_0014
[33] N. Lavoine, I. Desloges, A. Dufresne, J. Bras, Microfibrillated cellulose–Its barrier properties and applications in cellulosic materials: A review, Carbohydrate Polymers 90(2) (2012) 735-764. https://doi.org/10.1016/j.carbpol.2012.05.026
[34] M. W. Ullah, M. Ul-Islam, S. Khan, Y. Ki, J. K. Park, Structural and physico-mechanical characterization of bio-cellulose produced by a cell-free system, Carbohydrate Polymers 136 (2016) 908-916. https://doi.org/10.1016/j.carbpol.2015.10.010
[35] M. W. Ullah, M. Ul-Islam, S. Khan, Y. Ki, J. K. Innovative production of bio-cellulose using a cell-free system derived from a single cell line, Carbohydrate Polymers 132 (2015) 286-294. https://doi.org/10.1016/j.carbpol.2015.06.037
[36] S. P. Lin, I. LoiraCalvar, J. M. Catchmark, J. R. Liu, A. Demirci, K. C. Cheng, Biosynthesis, production and applications of bacterial cellulose, Cellulose 20(5) (2013) 2191-2219. https://doi.org/10.1007/s10570-013-9994-3
[37] T. Abitbol, A. Rivkin, Y. Cao, Y. Nevo, E. Abraham T. Ben-Shalom, O. Shoseyov, nanocellulose, a tiny fiber with huge applications, Current Opinion in Biotechnology 39 (2016) 76-88. https://doi.org/10.1016/j.copbio.2016.01.002
[38] A. N. Nakagait, H. Yano, The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites, Applied Physics A 78(4) (2004). 547-552. https://doi.org/10.1007/s00339-003-2453-5
[39] P. Stenstad, M. Andresen, B. S. Tanem, P. Stenius, Chemical surface modifications of microfibrillated cellulose, Cellulose 15(1) (2008) 35-45. https://doi.org/10.1007/s10570-007-9143-y
[40] F. Beltramino, M. B. Roncero, T. Vidal, C. Valls, A novel enzymatic approach to nanocrystalline cellulose preparation, Carbohydrate Polymers 189 (2018) 39-47. https://doi.org/10.1016/j.carbpol.2018.02.015
[41] Q. Cheng, S. Wang, T. G. Rials, Poly (vinyl alcohol) nanocomposites reinforced with cellulose fibrils isolated by high intensity ultrasonication, Composites Part A: Applied Science and Manufacturing 40(2) (2009) 218-224. https://doi.org/10.1016/j.compositesa.2008.11.009
[42] C. Salas, T. Nypelö, C. Rodriguez-Abreu, C. Carrillo, O. J. Rojas, Nanocellulose properties and applications in colloids and interfaces, Current Opinion in Colloid and Interface Science 19(5) (2014) 383-396. https://doi.org/10.1016/j.cocis.2014.10.003
[43] A. Chakraborty, M. Sain, M. Kortschot, Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing, Published by De Gruyte, (2005) 102-107. https://doi.org/10.1515/HF.2005.016
[44] H. Xie, H. Du, X. Yang, C. Si, Recent strategies in preparation of cellulose nanocrystals and cellulose nanofibrils derived from raw cellulose materials, International Journal of Polymer Science, 2018. https://doi.org/10.1155/2018/7923068
[45] E. Abraham, B. Deepa, L. A. Pothan, M. Jacob, S. Thomas, U. Cvelbar, R. Anandjiwala, Extraction of nanocellulose fibrils from lignocellulosicfibres: A novel approach, Carbohydrate Polymers, 86(4) (2011) 1468-1475. https://doi.org/10.1016/j.carbpol.2011.06.034
[46] M. N. Angles, A. Dufresne, Plasticized starch/tunicin whiskers nanocomposite materials. 2. Mechanical behavior, Macromolecules, 34(9) (2001) 2921-2931. https://doi.org/10.1021/ma001555h
[47] M. Matos Ruiz, J. Y. Cavaille, A. Dufresne, J. F. Gerard, C. Graillat, Processing and characterization of new thermoset nanocomposites based on cellulose whiskers, Composite Interfaces, 7(2) (2000) 117-131. https://doi.org/10.1163/156855400300184271
[48] W. P. F. Neto, J. L. Putaux, M. Mariano, Y. Ogawa, H. Otaguro, D. Pasquini, A. Dufresne, (2016). Comprehensive morphological and structural investigation of cellulose I and II nanocrystals prepared by sulphuric acid hydrolysis. RSC Advances, 6(79) 76017-76027.
[49] J. Araki, M. Wada, S. Kuga, T. Okano, Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose, Colloids and Surfaces A: Physicochemical and Engineering Aspects 142(1) (1998) 75-82. https://doi.org/10.1016/S0927-7757(98)00404-X
[50] F. Beltramino, M. B. Roncero, A. L. Torres, T. Vidal, C. Valls, Optimization of sulfuric acid hydrolysis conditions for preparation of nanocrystalline cellulose from enzymatically pretreated fibers, Cellulose 23(3) (2016) 1777-1789. https://doi.org/10.1007/s10570-016-0897-y
[51] H. Y. Yu, Z. Y. Qin, L. Liu, X. G. Yang, Y. Zhou, J. M. Yao, Comparison of the reinforcing effects for cellulose nanocrystals obtained by sulfuric and hydrochloric acid hydrolysis on the mechanical and thermal properties of bacterial polyester, Composites Science and Technology 87(2013) 22-28. https://doi.org/10.1016/j.compscitech.2013.07.024
[52] H. Yu, Z. Qin, B. Liang, N. Liu, Z. Zhou, L. Chen, Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions, Journal of Materials Chemistry A 1(12) (2013a) 3938-3944. https://doi.org/10.1039/C3TA01150J
[53] T. Koshizawa, Degradation of wood cellulose and cotton linters in phosphoric acid, Japan Tappi Journal 14(7) (1960) 455-458. https://doi.org/10.2524/jtappij.14.455
[54] H. Sadeghifar, I. Filpponen, S. P. Clarke, D. F. Brougham, D. S. Argyropoulos, Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface, Journal of Materials Science 46(22) (2011) 7344-7355. https://doi.org/10.1007/s10853-011-5696-0
[55] L. Wang, X. Zhu, X. Chen, Y. Zhang, H. Yang, Q. Li, J. Jiang, Isolation and characteristics of nanocellulose from hardwood pulp via phytic acid pretreatment, Industrial Crops and Products 182 (2022) 114921. https://doi.org/10.1016/j.indcrop.2022.114921
[56] A. Winter, B. Arminger, S. Veigel, C. Gusenbauer, W. Fischer, M. Mayr, W. Gindl-Altmutter, Nanocellulose from fractionated sulfite wood pulp, Cellulose, 27(16) (2020) 9325-9336. https://doi.org/10.1007/s10570-020-03428-8
[57] V. A. Barbash O. V. Yashchenko, Preparation and application of nanocellulose from non-wood plants to improve the quality of paper and cardboard, Applied Nanoscience, 10(8) (2020) 2705-2716. https://doi.org/10.1007/s13204-019-01242-8
[58] A. Dufresne, Nanocellulose: a new ageless bionanomaterial, Materials Today 16(6), (2013) 220-227. https://doi.org/10.1016/j.mattod.2013.06.004
[59] J. Gröndahl, K. Karisalmi J. Vapaavuori, Micro-and NCs from non-wood waste sources; processes and use in industrial applications, Soft Matter, 17(43), (2021), 9842-9858. https://doi.org/10.1039/D1SM00958C
[60] M. Rajinipriya, M. Nagalakshmaiah, M. Robert, S. Elkoun Importance of agricultural and industrial waste in the field of NC and recent industrial developments of wood based nanocellulose: a review, ACS Sustainable Chemistry and Engineering, 6(3) (2018) 2807-2828. https://doi.org/10.1021/acssuschemeng.7b03437
[61] Y. Habibi, Key advances in the chemical modification of nanocelluloses, Chemical Society Reviews 43(5) (2014) 1519-1542. https://doi.org/10.1039/C3CS60204D
[62] A. F. Turbak, F. W. Snyder K. R. Sandberg, Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential, Journal of Applied Polymer Science. Applied Polymer Symposium 37(9) (1983) 815-827.
[63] F. W. Herrick, R. L. Casebier, J. K. Hamilton, K. R. Sandberg, Microfibrillated cellulose: morphology and accessibility, Journal of Applied Polymer Science. Applied polymer Symposium 37(2) (1983) 797-813.
[64] Y. Qing, R. Sabo, J. Y. Zhu, U. Agarwal, Z. Cai, Y. Wu, A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches, Carbohydrate Polymers 97(1) (2013). 226-234. https://doi.org/10.1016/j.carbpol.2013.04.086
[65] C. Miao, W. Y. Hamad, Cellulose reinforced polymer composites and nanocomposites: a critical review, Cellulose 20(5) (2013) 2221-2262. https://doi.org/10.1007/s10570-013-0007-3
[66] T. Bhattacharjee, A Comprehensive Review on Important Preparation and Application of nanocelluloe, Medicon Medical Sciences, 4 (2023) 16-33. https://doi.org/10.55162/MCMS.04.091
[67] H. L. Teo, R. A. Wahab, Towards an eco-friendly deconstruction of agro-industrial biomass and preparation of renewable cellulose nanomaterials: A review, International Journal of Biological Macromolecules 161(2020) 1414-1430. https://doi.org/10.1016/j.ijbiomac.2020.08.076
[68] S. Fujisawa, Y. Okita, H. Fukuzumi, T. Saito, A. Isogai, Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups, Carbohydrate Polymers 84(1) (2011) 579-583. https://doi.org/10.1016/j.carbpol.2010.12.029
[69] T. Saito, S. Kimura, Y. Nishiyama, A. Isogai, Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose, Biomacromolecules 8(8) (2007) 2485-2491. https://doi.org/10.1021/bm0703970
[70] F. Jiang, Y. L. Hsieh, Chemically and mechanically isolated nanocellulose and their self-assembled structures, Carbohydrate Polymers 95 (1) (2013) 32-40. https://doi.org/10.1016/j.carbpol.2013.02.022
[71] R. Rohaizu, W. D. Wanrosli, Sono-assisted TEMPO oxidation of oil palm lignocellulosic biomass for isolation of nanocrystalline cellulose, Ultrasonics Sonochemistry 34(2017)631-639. https://doi.org/10.1016/j.ultsonch.2016.06.040
[72] F. Barja, Bacterial nanocellulose production and biomedical applications Journal of Biomedical Research 35(4) (2021) 310. https://doi.org/10.7555/JBR.35.20210036
[73] W. K.Czaja, D. J. Young, M. Kawecki, R. M. Brown, The future prospects of microbial cellulose in biomedical applications, Biomacromolecules, 8(1) (2007) 1-12. https://doi.org/10.1021/bm060620d
[74] G. V. Sakovich, E. A. Skiba, V. V. Budaeva, E. K. Gladysheva L. A. Aleshina, Technological fundamentals of bacterial NC production from zero prime-cost feedstock, Doklady Biochemistry and Biophysics, 477(1) (2017) 357-359. https://doi.org/10.1134/S1607672917060047
[75] C. H. Kuo, J. H. Chen, B. K. Liou, C. K. Lee, Utilization of acetate buffer to improve bacterial cellulose production by Gluconacetobacterxylinus, Food Hydrocolloids 53(2016) 98-103. https://doi.org/10.1016/j.foodhyd.2014.12.034
[76] S. Mekhilef, R. Saidur, M. Kamalisarvestani, Effect of dust, humidity and air velocity on efficiency of photovoltaic cells, Renewable and Sustainable Energy Reviews 16(5) (2012) 2920-2925. https://doi.org/10.1016/j.rser.2012.02.012
[77] J. Jiang, Y. Zhu, F. Jiang, Sustainable isolation of NC from cellulose and lignocellulosic feedstocks: Recent progress and perspectives, Carbohydrate Polymers 267 (2021) 118188. https://doi.org/10.1016/j.carbpol.2021.118188
[78] M. B. Noremylia, M. Z. Hassan, Z. Ismail, Recent advancement in isolation, processing, characterization and applications of emerging nanocellulose: A review. International Journal of Biological Macromolecules. https://doi.org/10.1016/j.ijbiomac.2022.03.064
[79] D. Trache, M. H. Hussin, M. M. Haafiz, V. K. Thakur, Recent progress in cellulose nanocrystals: sources and production, Nanoscale, 9(5) (2017) 1763-1786. https://doi.org/10.1039/C6NR09494E
[80] C. Salas, T. Nypelö, C. Rodriguez-Abreu, C. Carrillo, O. J. Rojas, Nanocellulose properties and applications in colloids and interfaces, Current Opinion in Colloid and Interface Science, 19(5) (2014) 383-396. https://doi.org/10.1016/j.cocis.2014.10.003
[81] T. Li, C. Chen, A. H. Brozena, J. Y. Zhu, L. Xu, C. Driemeier, L. Hu, Developing fibrillated cellulose as a sustainable technological material, Nature, 590(7844) (2021) 47-56. https://doi.org/10.1038/s41586-020-03167-7
[82] D. Zhao, Y. Zhu, W. Cheng, W. Chen, Y. Wu, H. Yu, Cellulose based flexible functional materials for emerging intelligent electronics, Advanced Materials 33(28) (2021) 2000619. https://doi.org/10.1002/adma.202000619
[83] Y. Ye, Y. Zhang, Y. Chen, X. Han, F. Jiang, Cellulose nanofibrils enhanced, strong, stretchable, freezing tolerant ionic conductive organohydrogel for multifunctional sensors, Advanced Functional Materials 30(35) (2020) 2003430. https://doi.org/10.1002/adfm.202003430
[84] C. Vilela, A. J. Silvestre, F. M. Figueiredo C. S. Freire, Nanocellusoe-based materials as components of polymer electrolyte fuel cells, Journal of Materials Chemistry A 7(35) (2019) 20045-20074. https://doi.org/10.1039/C9TA07466J
[85] S. A. Kedzior, V. A. Gabriel, M. A. Dubé, E. D. Cranston, Nanocellulose in emulsions and heterogeneous waterbased polymer systems: A review, Advanced Materials, 33(28), (2021), 2002404. https://doi.org/10.1002/adma.202002404
[86] K. Heise, E. Kontturi, Y. Allahverdiyeva, T. Tammelin, M. B. Linder, O. Ikkala, Nanocellulose: recent fundamental advances and emerging biological and biomimicking applications, Advanced Materials, 33(3) (2021) 2004349. https://doi.org/10.1002/adma.202004349
[87] M. N. F. Norrrahim, N. A. M. Kasim, V. F. Knight, F. A. Ujang, N. Janudin, M. A. I. A. Razak, W. M. Z. W. Yunus, Nancellulose: The next super versatile material for the military, Materials Advances, 2(5) (2021) 1485-1506. https://doi.org/10.1039/D0MA01011A
[88] Q. F., Guan, H. B. Yang, Z. M. Han, Z. C. Ling, S. H. Yu, An all-natural bioinspired structural material for plastic replacement, Nature Communications 11(1) (2020) 1-7. https://doi.org/10.1038/s41467-020-19174-1
[89] S. S. Nair, J. Y. Zhu, Y. Deng, A. J. Ragauskas, High performance green barriers based on nanocellulose, Sustainable Chemical Processes 2(1) (2014) 1-7. https://doi.org/10.1186/s40508-014-0023-0
[90] T. A. Akter, J. Nayeem, A. H. Quadery, M. A. Razzaq, M. T. Uddin, M. S. Bashar, M. S. Jahan, Microcrystalline cellulose reinforced chitosan coating on kraft paper, Cellulose Chemistry and Technology 54(1–2) (2020) 95-102.
[91] N. Jannatyha, S. Shojaee-Aliabadi, M. Moslehishad E. Moradi, Comparing mechanical, barrier and antimicrobial properties of NC/CMC and nanochitosan/CMC composite films, International Journal of Biological Macromolecules 164 (2020) 2323-2328. https://doi.org/10.1016/j.ijbiomac.2020.07.249
[92] T. Saito, A. Isogai, TEMPO-mediated oxidation of native cellulose, The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions, Biomacromolecules, 5(5), (2004), 1983-1989.
[93] G. Rodionova, M. Lenes, O. Eriksen, O. Gregersen, Surface chemical modification of microfibrillated cellulose: improvement of barrier properties for packaging applications, Cellulose, 18 (2011) 127-134. https://doi.org/10.1007/s10570-010-9474-y
[94] I. S. Bayer, D. Fragouli, A. Attanasio, B. Sorce, G. Bertoni, R. Brescia, A. Athanassiou, Water-repellent cellulose fiber networks with multifunctional properties, ACS Applied Materials and Interfaces, 3(10) (2011) 4024-4031. https://doi.org/10.1021/bm0497769
[95] L. Bacakova, J. Pajorova, M. Tomkova, R. Matejka, A. Broz, J. Stepanovska P. Kallio, Applications of NC/nanocarbon composites: Focus on biotechnology and medicine, Nanomaterials, 10(2) (2020) 196. https://doi.org/10.3390/nano10020196
[96] J. M. González-Domínguez, A. Ansón-Casaos, L. Grasa, L. Abenia, A. Salvador, E. Colom, W. K. Maser, Unique properties and behavior of nonmercerized type-II cellulose nanocrystals as carbon nanotube biocompatible dispersants, Biomacromolecules, 20(8) (2019) 3147-3160. https://doi.org/10.1021/acs.biomac.9b00722
[97] N. G. Hatsopoulos J. P. Donoghue, The science of neural interface systems, Annual Review of Neuroscience, 32 (2009) 249.
[98] J. R. Capadona, K. Shanmuganathan, D. J. Tyler, S. J. Rowan C. Weder, Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis, Science, 319(5868) (2008) 1370-1374. https://doi.org/10.1126/science.115330
[99] J. R. Capadona, K. Shanmuganathan, S. Trittschuh, S. Seidel, S. J. Rowan, C. Weder, Polymer nanocomposites with nanowhiskers isolated from microcrystalline cellulose, Biomacromolecules, 10(4) (2009) 712-716. https://doi.org/10.1021/bm8010903
[100] T. Abitbol, A. Rivkin, Y. Cao, Y. Nevo, E. Abraham, T. Ben-Shalom, O. Shoseyov, Nanocellulose, a tiny fiber with huge applications, Current Opinion in Biotechnology, 39 (2016) 76-88. https://doi.org/10.1016/j.copbio.2016.01.002
[101] R. M. Domingues, M. E. Gomes, R. L. Reis, The potential of cellulose nanocrystals in tissue engineering strategies, Biomacromolecules, 15(7) (2014) 2327-2346. https://doi.org/10.1021/bm500524s
[102] J. K. Jackson, K. Letchford, B. Z. Wasserman, L. Ye, W. Y. Hamad, H. M. Burt, The use of nanocrystalline cellulose for the binding and controlled release of drugs, International Journal of Nanomedicine, 6 (2011) 321. https://doi.org/10.2147/IJN.S16749
[103] X. Zhang, J. Huang, P. R. Chang, J. Li, Y. Chen, D. Wang, J. Chen, Structure and properties of polysaccharide nanocrystal-doped supramolecular hydrogels based on cyclodextrin inclusion, Polymer, 51(19) (2010) 4398-4407. https://doi.org/10.1016/j.polymer.2010.07.025
[104] D. O. Carlsson, K. Hua, J. Forsgren A. Mihranyan, Aspirin degradation in surface-charged TEMPO-oxidized mesoporous crystalline nanocellulose, International Journal of Pharmaceutics, 461(1-2), (2014), 74-81. https://doi.org/10.1016/j.ijpharm.2013.11.032
[105] N. Lin, A. Dufresne, Supramolecular hydrogels from in situ host–guest inclusion between chemically modified cellulose nanocrystals and cyclodextrin, Biomacromolecules, 14(3) (2013) 871-880. https://doi.org/10.1021/bm301955k
[106] S. Ling, W. Chen, Y. Fan, K. Zheng, K. Jin, H. Yu, D. L. Kaplan, Biopolymer nanofibrils: Structure, modeling, preparation, and applications, Progress in Polymer Science, 85 (2018) 1-56. https://doi.org/10.1016/j.progpolymsci.2018.06.004
[107] L. Zhu, X. Zhou, Y. Liu, Q. Fu, Highly sensitive, ultrastretchable strain sensors prepared by pumping hybrid fillers of carbon nanotubes/cellulose nanocrystal into electrospun polyurethane membranes, ACS Applied Materials and Interfaces, 11(13) (2019) 12968-12977. https://doi.org/10.1021/acsami.9b00136
[108] S. Zhang, H. Liu, S. Yang, X. Shi, D. Zhang, C. Shan, Z. Guo, Ultrasensitive and highly compressible piezoresistive sensor based on polyurethane sponge coated with a cracked cellulose nanofibril/silver nanowire layer, ACS Applied Materials and Interfaces, 11(11) (2019) 10922-10932. https://doi.org/10.1021/acsami.9b00900
[109] D. Zhao, Q. Zhang, W. Chen, X. Yi, S. Liu, Q. Wang, H. Yu, Highly flexible and conductive cellulose-mediated PEDOT: PSS/MWCNT composite films for supercapacitor electrodes, ACS Applied Materials and Interfaces, 9(15) (2017) 13213-13222.
[110] Y. Ko, M. Kwon, W. K. Bae, B. Lee, S. W. Lee, J. Cho, Flexible supercapacitor electrodes based on real metal-like cellulose papers, Nature Communications 8(1) (2017) 1-11. https://doi.org/10.1038/s41467-017-00550-3
[111] U. Vainio, N. Maximova, B. Hortling, J. Laine, P. Stenius, L.K. Simola, J. Gravitis, R. Serimaa, Morphology of dry lignins and size and shape of dissolved kraft lignin particles by X-ray scattering, Langmuir 20(22) (2004) 9736-9744. https://doi.org/10.1021/la048407v
[112] T. Higuchi, Lignin biochemistry: biosynthesis and biodegradation, Wood Science and Technology 24 (1990) 23-63. https://doi.org/10.1007/BF00225306
[113] C. Clemons, In: Wood -Polymer Composites. K. O. Niska, M. Sain, Eds. Woodhead Publ. Ltd.: Cambridge, U.K., 12, (2012)
[114] W. Boerjan, J. Ralph, M. Baucher, Lignin Biosynthesis, Annual Review of Plant Biology 54(2003) 519–546. http//doi.org/10.1146/annurev.arplant.54.031902.134938
[115] P. Sannigrahi, A.J. Ragauskas, Characterization of fermentation residues from the production of bio-ethanol from lignocellulosic feedstocks, Journal of Biobased Materials and Bioenergy 5 (2011) 514–519. https://doi.org/10.1166/jbmb.2011.1170
[116] C. Li, X. A. Zhao, Wang, G.W. Huber, T. Zhang, Catalytic transformation of lignin for the production of chemicals and fuels, Chemical Reviews 115 (2015) 11559–11624. https://doi.org/10.1021/acs.chemrev.5b00155
[117] R.J.A. Gosselink, A. H. AbächerliSemke, R. Malherbe, P. Käuper, A. Nadif, J.E.G. Van Dam, Analytical protocols for characterization of sulphur-free lignin, Industrial Crops and Products 19(3) (2004) 271-281. https://doi.org/10.1016/j.indcrop.2003.10.008
[118] R. S. Popy, Y. Ni, A. Salam, M. S. Jahan, Mild potassium hydroxide-based alkaline integrated biorefinery process of Kash (Saccharumspontaneum), Industrial Crops and Products 154, (2020), 112738. https://doi.org/10.1016/j.indcrop.2020.112738
[119] M. S. Jahan, M. M. Rahman, Y. Ni, Alternative initiatives for nonwood chemical pulping and integration with the biorefinery concept: A review, Biofuels, Bioproducts and Biorefining 15(1) (2021) 100-118. https://doi.org/10.1002/bbb.2143
[120] S. Sutradhar, K. M. Y. Arafat, J. Nayeem, M. S. Jahan, Organic acid lignin from rice straw in phenol-formaldehyde resin preparation for plywood, Cellulose Chemistry and Technology 54(5-6), (2020), 463-471.
[121] C. Jiang, H. He, H. Jiang, L. Ma, D.M. Jia, Nano-lignin filled natural rubber composites: Preparation and characterization, Express Polymer Letters, 7(5) (2013). https://doi.org/10.3144/expresspolymlett.2013.44
[122] B. Wang, D. Sun, H. M. Wang, T. Q. Yuan, and R. C. Sun, Green and facile preparation of regular lignin nanoparticles with high yield and their natural broad-spectrum sunscreens, ACS Sustainable Chemistry and Engineering 7(2) (2018) 2658-2666. https://doi.org/10.1021/acssuschemeng.8b05735
[123] Y. Qian, Y. Deng, X. Li, H. Qiu, D. Yang, Formation of uniform colloidal spheres from lignin, a renewable resource recovered from pulping spent liquor, Green Chemistry 16(4) (2014) 2156-2163. https://doi.org/10.1039/C3GC42131G
[124] M. Lievonen, J.J. Valle-Delgado, M.L. Mattinen, E.L. Hult, K. Lintinen, M.A. Kostiainen, A. Paananen, G.R. Szilvay, H. Setälä, and M. Österberg, A simple process for lignin nanoparticle preparation, Green Chemistry 18(5) (2016) 1416-1422. https://doi.org/10.1039/C5GC01436K
[125] P. Figueiredo, K., Lintinen, A. Kiriazis, V. Hynninen, Z. Liu, T. Bauleth-Ramos, A. Rahikkala, A. Correia, T. Kohout, B. Sarmento, In vitro evaluation of biodegradable lignin-based nanoparticles for drug delivery and enhanced antiproliferation effect in cancer cells, Biomaterials, (2017) 121 97–108. https://doi.org/10.1016/j.biomaterials.2016.12.034
[126] K. Xiong, C. Jin, G. Liu, G. Wu, J. Chen, Z. Kong, Preparation and characterization of lignin nanoparticles with controllable size by nanoprecipitation method, Chemistry and Industry for Forest Products 2015 35 85–92
[127] S.R. Yearla, and K. Padmasree, Preparation and characterisation of lignin nanoparticles: Evaluation of their potential as antioxidants and UV protectants. Journal of Experimental Nanoscience 11 (2016) 289–302. https://doi.org/10.1080/17458080.2015.1055842
[128] R. S. Fukushima, R. D. Hatfield, Extraction and isolation of lignin for utilization as a standard to determine lignin concentration using the acetyl bromide spectrophotometric method, J. Agric. Food Chem. 49 (2001) 3133–3139. https://doi.org/10.1021/jf010449r
[129] A.P. Richter, B. Bharti, H. B. Armstrong, J.S. Brown, D. Plemmons, V.N. Paunov, S.D.Stoyanov, O.D. Velev, Synthesis and characterization of biodegradable lignin nanoparticles with tunable surface properties, Langmuir, 32 (2016) 6468–6477. https://doi.org/10.1021/acs.langmuir.6b01088
[130] H. Li, Y. Deng, B. Liu, Y. Ren, J. Liang, Y. Qian, X. Qiu, C. Li, D. Zheng, Preparation of nanocapsules via the self-assembly of kraft lignin: A totally green process with renewable resources, ACS Sustainable Chemistry and Engineering 4(4) (2016) 1946-1953. https://doi.org/10.1021/acssuschemeng.5b01066
[131] S.J. Juikar, and N. Vigneshwaran, Extraction of nanolignin from coconut fibers by controlled microbial hydrolysis, Industrial Crops and Products 109 2017 420-425. https://doi.org/10.1016/j.indcrop.(2017).08.067
[132] R. H. Müller, K. Peters, R. Becker, B. Kruss, Nanosuspensions for the iv administration of poorly soluble drugs-stability during sterilization and long-term storage, Proc. Int. Symp. Control Rel. Bioact. Mater. 22 (1995) 574–575.
[133] R. H. Müller, K. Peters, Nanosuspensions for the formulation of poorly soluble drugs, International Journal of Pharmaceuticals 160, (1998), 229–237. https://doi.org/10.1016/S0378-5173(97)00311-6
[134] E. Merisko-Liversidge, P. Sarpotdar, J. Bruno, S. Hajj, L. Wei, N. Peltier, J. Rake, J.M. Shaw, S. Pugh, L. Polin, Formulation and antitumor activity evaluation of nanocrystalline suspensions of poorly soluble anticancer drugs, Pharmaceutical Research 13 (1996) 272–278. https://doi.org/10.1023/A:1016051316815
[135] R. J. Malcolmson, J. K. Embleton, Dry powder formulations for pulmonary delivery, Pharmaceutical Science and Technology Today 1 (1998) 394–398. https://doi.org/10.1016/S1461-5347(98)00099-6
[136] S. S. Nair, S. Sharma, Y. Pu, Q. Sun, S. Pan, J. Y. Zhu, Y. Deng, A. J. Ragauskas, High shear homogenization of lignin to nanolignin and thermal stability of nanolignin-polyvinyl alcohol blends, ChemSusChem 7 (2014) 3513–3520. https://doi.org/10.1002/cssc.201402314
[137] I. A. Gilca, V. I. Popa, C. Crestini, Obtaining lignin nanoparticles by sonication. Ultrason, Sonochemistry 23 (2015) 369–375. https://doi.org/10.1016/j.ultsonch.2014.08.021
[138] M.D. Shawn, K.N. Cicotte, D.R. Wheeler, D.A. Benko, Lignin Nanoparticle Synthesis, U.S. Patent 9,102,801, 11 (2015). https://doi.org/10.3390/ijms18061244
[139] S. Beisi, A. Miltner, A. Friedl, Lignin from Micro- to Nanosize: Production Methods, International Journal of Molecular Sciences 18(6), 1244 (2017) https://doi.org/10.3390/ijms18061244
[140] M. Zimniewska, R. Kozłowski, J. Batog, Nanolignin modified linen fabric as a multifunctional product, Molecular Crystals and Liquid Crystals, 484(1) pp.43-409. https://doi.org/10.1080/15421400801903395
[141] F.R. Wurm, C. K. Weiss, Nanoparticles from renewable polymers, Frontiers in Chemistry 2 (2008) p.49. https://doi.org/10.3389/fchem.2014.00049
[142] W. Yang, M. Rallini, M. Natali, J. Kenny, P. Ma, W. Dong, L. Torre, D. Puglia, Preparation and properties of adhesives based on phenolic resin containing lignin micro and nanoparticles: a comparative study, Materials and Design, 161 (2019) pp.55-63. https://doi.org/10.1016/j.matdes.2018.11.032
[143] D. Kai, M. J. Tan, P. L. Chee, Y. K. Chua, Y. L. Yap, X. J. Loh, Towards lignin-based functional materials in a sustainable world, Green Chemistry 18 (2016) 1175–1200. https://doi.org/10.1039/C5GC02616D
[144] W. Yang, J.S. Owczarek, E. Fortunati, M. Kozanecki, A. Mazzaglia, G. M. Balestra, J. M. Kenny, L. Torre, D. Puglia, Antioxidant and antibacterial lignin nanoparticles in polyvinyl alcohol/chitosan films for active packaging, Industrial Crops and Products 94 (2016) pp.800-811. https://doi.org/10.1016/j.indcrop.2016.09.061
[145] S. Danti, L. Trombi, A. Fusco, B. Azimi, A. Lazzeri, P. Morganti, M.B. Coltelli, G. Donnarumma, Chitin nanofibrils and nanolignin as functional agents in skin regeneration, International Journal of Molecular Sciences 20(11) (2019) 2669. https://doi.org/10.3390/ijms20112669
[146] B. Del Saz-Orozco, M. Oliet, M. V. Alonso, E. Rojo, F. Rodríguez, Formulation optimization of unreinforced and lignin nanoparticle-reinforced phenolic foams using an analysis of variance approach, Composite Science and Technology 72 (2012) 667−674. https://doi.org/10.1016/j.compscitech.2012.01.013
[147] X. Luo, A. Mohanty, M. Misra, Lignin as a reactive reinforcing filler for water-blown rigid biofoam composites from soy oil-based polyurethane, Industrial Crops and Products 47, (2013) 13−19. https://doi.org/10.1016/j.indcrop.2013.01.040
[148] Z. Chen, P. Li, Q. Ji, Y. Xing, X. Ma, Y. Xia, All-polysaccharide composite films based on calcium alginate reinforced synergistically by multidimensional cellulose and hemicellulose fractionated from corn husks, Materials Today Communications 34105090. https://doi.org/10.1016/j.mtcomm.2022.105090
[149] M.M. Haque, Y. Ni, A. J .U. Akon, M. A. Quaiyyum, M. S. Jahan, , A review on Acacia auriculiformis: importance as pulpwood planted in social forestry International, Wood Products Journal 12(3) (2021) pp.194-205.
[150] L. C. Malucelli, L. G. Lacerda, M. Dziedzic, da Silva, M. A. C. Filho, Preparation, properties and future perspectives of nanocrystals from agro-industrial residues: a review of recent research, Reviews in Environmental Science and Bio/Technology 16 (2017) 131-145. https://doi.org/10.1007/s11157-017-9423-4
[151] M. S. Jahan, A. Al-Maruf, M. A. Quaiyyum, Comparative studies of pulping of jute fiber, jute cutting and jute caddis. Bangladesh Journal of Scientific and Industrial Research42(4), (2007) 425-434.
[152] T. Ferdous, M. A. Quaiyyum, A. Salam, M. S. Jahan, Pulping of bagasse (Saccrarum officinarum), kash (Saccharum spontaneum) and corn stalks (Zea mays), Current Research in Green and Sustainable Chemistry 3, (2020) 100017.
[153] A.C.F. Louis, S. Venkatachalam, S. Gupta, Innovative strategy for rice straw valorization into nanocellulose and nanohemicellulose and its application. Industrial Crops and Products, (2022),179, 114695 https://doi.org/10.1016/j.indcrop.2022.114695
[154] D. Klemm, F. Kramer, S. Moritz, T. Lindström, M. Ankerfors, D. Gray, A. Dorris, Nanocelluloses: a new family of nature based materials, Angewandte Chemie International Edition 50(24) (2011) 5438-5466. https://doi.org/10.1002/anie.201001273