Engineered Nanomaterials for Energy Conversion Cells
Mohammad Harun-Ur-Rashid, Abu Bin Imran
Day by day, the energy demand is exceeding due to consumption by increasing world population and fast-growing industrialization. As a result, the biggest problems of the 21st century are energy demand and how it affects the environment. The disquiet is caused by the excessive reliance on fossil fuels as raw materials for the production of energy, such as coal, oil, and natural gas. Around 13 terawatts of energy are needed every day by more than 6.5 billion people around the world. However, the scarcity of currently used fossil fuels and the environmental deterioration corresponding to fuel rectification processes have triggered the compulsion to produce renewable, non-polluting, and eco-friendly energy generation and conversion technologies. Suitable technologies for the conversion and storage of energy will play a vital role in addressing the current challenges associated with the increasing demand for clean, renewable, sustainable, transferable, benign, eco-friendly, nominal, and ceaseless power supplies for users. The substitution of fossil fuels could be clean energies, for example, solar, hydroelectric, wind, geothermal, biogas, and tidal energies. Generally, alternative renewable energy conversion requires various complicated physical and chemical processes on the surface and interfaces of cell components and transporting electrons, positive holes, ions, and molecules through the entire system. The harnessing of energy requires new and novel nanomaterials and evolution of nanocomposite and multifunctional nanostructured materials, including metal, ceramic, polymer matrix, and amalgamation. Various essential advantages of using engineered nanomaterials, such as high surface area, unique physicochemical properties, mechanical strength, and favorable transport properties, are crucial to energy harnessing applications. Electrocatalysis-based energy conversion devices are widely studied to get high yield and optimum performance of energy conversion services. The structural engineering of nanomaterials is associated with the fabrication of size, spatial array, hetero architecture, and shape of nanostructures, thereby producing a well-defined novel nanomaterial, which could be used for high-performance energy conversion system applications. The development and the innovations introduced in nanotechnology and material chemistry are making key breakthroughs for amplifying these devices’ performance for perceiving the objective of renewable and sustainable clean energy technologies. The engineered nanomaterials such as nanoparticles, nanorods, nanospheres, nanosheets, nanotubes, and nanowires have drawn the attention of many nanotechnologists because of their attractive physical and chemical properties attributed to their significantly smaller size. The applications of zero (0-), one (1-), two (2-), and three (3-) dimensional nanostructures in the construction of high performance and cost-effective systems for harnessing energy by using renewable and sustainable technologies have been reported in many works of literature. This chapter will focus on the basic characteristics and idea of engineered nanomaterials for energy conversion cells with well-built prominence on the connection between structural features and resultant performances. In addition to emphasizing the applications of various nanomaterials in energy conversion cells, the apparent advantages, disadvantages, limitations, and challenges will be addressed. Finally, the outlook regarding the prospective futures of engineered nanomaterials for energy conversion will be discussed.
Keywords
Nanomaterials, Energy Conversion, Solar Cell, Nanotechnology, Supercapacitor, Aerogel, Graphene Quantum Dots, Polymeric Nanoparticles, Fuel Cell, Rechargeable Batteries
Published online , 24 pages
Citation: Mohammad Harun-Ur-Rashid, Abu Bin Imran, Engineered Nanomaterials for Energy Conversion Cells, Materials Research Foundations, Vol. 148, pp 103-126, 2023
DOI: https://doi.org/10.21741/9781644902554-4
Part of the book on Applications of Emerging Nanomaterials and Nanotechnology
References
[1] M. Harun-Ur-Rashid, T. Seki, Y. Takeoka, Structural colored gels for tunable soft photonic crystals, Chem. Rec. 9 (2009) 87-105. https://doi.org/10.1002/tcr.20169
[2] M. Harun-Ur-Rashid, A.B. Imran, Superabsorbent hydrogels from carboxymethyl cellulose”, in Ibrahim H. Mondal (ed.) Carboxymethyl Cellulose. Volume I: Synthesis and Characterization, Nova Science Publishers, New York, 2019, pp. 159-182.
[3] M.R. Karim, Harun-Ur-Rashid, A.B. Imran, Highly stretchable hydrogel using vinyl modified narrow dispersed silica particles as cross-linker, ChemistrySelect, 5 (2020) 10556-10561. https://doi.org/10.1002/slct.202003044
[4] M. Harun-Ur-Rashid, T. Foyez, A.B. Imran, Fabrication of stretchable composite thin film for superconductor applications. In Sensors for Stretchable Electronics in Nanotechnology, CRC Press, 2021, pp. 63-78. https://doi.org/10.1201/9781003123781-5
[5] M. N. Huda, T. Seki, H. Suzuki, A. N. M. H. Kabir, M. Harun-Ur-Rashid, Y. Takeoka, Characteristics of high-density poly (N-isopropylacrylamide)(pNIPA) brushes on silicon surface by atom transfer radical polymerization. Trans. Mater. Res. Soc. Japan 35(4) (2010) 845-848.
[6] A-N. Chowdhury, J. Shapter, and A. B. Imran, Innovations in Nanomaterials, Nova Science Publishers, Inc., NY, USA, 2015
[7] M. Harun-Ur-Rashid, A. B. Imran, T. Seki, Y. Takeoka, M. Ishii, H. Nakamura, Template synthesis for stimuli-responsive angle independent structural colored smart materials, Trans. Mater. Res. Soc. 34 (2009) 333-337. https://doi.org/10.14723/tmrsj.34.333
[8] M. Harun-Ur-Rashid, A. B. Imran, T. Seki, M. Ishii, H. Nakamura, Y. Takeoka, Angle-independent structural color in colloidal amorphous arrays, ChemPhysChem, 11 (2010) 579-583. https://doi.org/10.1002/cphc.200900869
[9] Y. Takeoka, S. Yoshioka, M. Teshima, A. Takano, M. Harun-Ur-Rashid, M., T. Seki, Structurally coloured secondary particles composed of black and white colloidal particles, Sci. Rep. 3 (2013) 1-7. https://doi.org/10.1038/srep02371
[10] A. B. Imran, M. Harun-Ur-Rashid, Y. Takeoka, Polyrotaxane Actuators. In Soft Actuators, Springer, Singapore, 2019, pp. 81-147. https://doi.org/10.1007/978-981-13-6850-9_6
[11] M. Harun-Ur-Rashid, T. Foyez, I. Jahan, K. Pal, A. B. Imran, Rapid diagnosis of COVID-19 via nano-biosensor-implemented biomedical utilization: a systematic review, RSC Advances, 12 (2022) 9445-9465. https://doi.org/10.1039/D2RA01293F
[12] M. Harun-Ur-Rashid, A. B. Imran, M. A. B. H. Susan, Green Polymer Nanocomposites in Automotive and Packaging Industries, Curr. Pharm. Biotechnol. 24(1) (2023). https://doi.org/10.2174/1389201023666220506111027.
[13] M. Harun-Ur-Rashid, A. B. Imran, Nanomaterials in the Automobile Sector. In Emerging Applications of Nanomaterials, Materials Research Forum LLC, 141 (2023) 124-150. https://doi.org/10.21741/9781644902295-6
[14] M. Harun-Ur-Rashid, A. B. Imran, M. A. B. H. Susan, Prospective Nanomaterials for Food Packaging and Safety. In Emerging Applications of Nanomaterials, Materials Research Forum LLC, 141 (2023) 327-352. https://doi.org/10.21741/9781644902295-13
[15] A. B. Imran, M. A. B. H Susan, Natural fiber-reinforced nanocomposites in automotive industry. In Nanotechnology in the Automotive Industry, Elsevier, 2022, pp. 85-103. https://doi.org/10.1016/B978-0-323-90524-4.00005-0
[16] Y. Chen, S. Ji, C. Chen, Q. Peng, D. Wang, Y. Li, Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2 (2018) 1242-1264.
[17] X. Zhu, Q. Zhang, C. Huang, Y. Wang, C. Yang F. Wei, Validation of surface coating with nanoparticles to improve the flowability of fine cohesive powders. Particuology 30 (2017) 53-61.
[18] A. P. Alivisatos, Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science 271 (1996) 933-937.
[19] Q. Zhang, E. Uchaker, S. Candelaria G. Cao, Nanomaterials for energy conversion and storage. Chem. Soc. Rev. 42 (2013) 3127-3171.
[20] Y. Wang, N. Herron, Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties. J. Phys. Chem. 95 (1991) 525-532.
[21] V. I. Klimov, Semiconductor and metal nanocrystals: synthesis and electronic and optical properties, CRC, November 2003.
[22] S. K. Ghosh, T. Pal, Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles: From Theory to Applications. Chem. Rev. 107 (2007) 4797-4862.
[23] N. Felidj, J. Aubard, G. Levi, J. Krenn, A. Hohenau, G. Schider, A. Leitner, F. Aussenegg, Optimized surface-enhanced Raman scattering on gold nanoparticle arrays. Appl. Phys. Lett. 82 (2003) 3095-3097.
[24] K. Kneipp, M. Moskovits, H. Kneipp, Surface-enhanced Raman scattering: physics and applications. Springer, vol.103, pp. 1-17, 2006.
[25] R. Sardar, A. M. Funston, P. Mulvaney, R. W. Murray, Gold Nanoparticles: Past, Present, and Future. Langmuir 25 (2009) 13840-13851.
[26] M. Haruta, M. Date, Advances in the catalysis of Au nanoparticles. Appl. Catal. A 222 (2001) 427-437.
[27] M. Cortie, E. Van der Lingen, Catalytic gold nanoparticles. Mater. Forum 26 (2002) 1-4.
[28] E. Roduner, Size matters: why nanomaterials are different, Chem. Soc. Rev. 35 (2006) 583-592.
[29] G. Cao, Nanostructures & nanomaterials: synthesis, properties & applications. World Scientific Publishing Company, pp.448, April 2004.
[30] K. Koga, T. Ikeshoji, K. Sugawara, Size- and Temperature-Dependent Structural Transitions in Gold Nanoparticles. Phys. Rev. Lett. 92 (2004) 115507.
[31] H. Petrova, M. Hu, G. V. Hartland, Photothermal Properties of Gold Nanoparticles. Phys. Z. Chem. 221 (2007) 361-376.
[32] D. Leslie-Pelecky, R. Rieke, Magnetic Properties of Nanostructured Materials Chemistry of Materials. 8 (1996) 1770-1783.
[33] M. Terrones, Science and Technology of the Twenty-First Century: Synthesis, Properties, and Applications of Carbon Nanotubes. Annu. Rev. Mater. Res. 33 (2003) 419-501.
[34] R. Singh, J. W. Lillard Jr, Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol. 86 (2009) 215-223.
[35] G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41 (2012) 797-828.
[36] T. Shiyani, T. Bagch, Hybrid nanostructures for solar-energy-conversion applications. Nanomater. Energy 9 (2020) 39-46.
[37] S. Chander, A. Purohit, A. Sharma, Arvind, S. P. Nehra, M. S. Dhaka, A study on photovoltaic parameters of mono-crystalline silicon solar cell with cell temperature. Energy Rep. 1 (2015) 104-109.
[38] M. A. Green, E. D. Dunlop, D. H. Levi, J. Hohl‐Ebinger, M. Yoshita, Ho-Baillie, W. Y. Anita, Solar cell efficiency tables (version 54). Prog. Photovolt.: Res. Appl. 27 (2019) 565-575.
[39] J. Zheng, H. Mehrvarz, F. J. Ma, C. F. J. Lau, M. A. Green, S. Huang, A. W. Y. Ho-Baillie, 21.8% Efficient Monolithic Perovskite/Homo-Junction-Silicon Tandem Solar Cell on 16 cm2. ACS Energy Lett. 3 (2018) 2299-2300.
[40] O. Yehezkeli, R. Tel-Vered, J. Wasserman, A. Trifonov, D. Michaeli, R. Nechushtai, I. Willner, Integrated photosystem II-based photo-bioelectrochemical cells. Nat. Commun. 3:742 (2012) 1-7.
[41] J. Li, X. Feng, Y. Jia, Y. Yang, P. Cai, J. Huang, J. Li, Co-assembly of photosystem II in nanotubular indium–tin oxide multilayer films templated by cellulose substance for photocurrent generation. J. Mater. Chem. A 5 (2017) 19826-19835.
[42] D. Lan, M. A. Green, The potential and design principle for next-generation spectrum-splitting photovoltaics: Targeting 50% efficiency through built-in filters and generalization of concept. Prog. Photovolt.: Res. Appl. 27 (2019) 899-904.
[43] O. E. Semonin, J. M. Luther, S. Choi, H. Y. Chen, J. Gao, A. J. Nozik, M. C. Beard, Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science 334:6062 (2011) 1530-1533.
[44] X. Yan, J. Zhang, Copper(II) complexes based on 4-R-terpyridine: Synthesis, structures, and photocatalytic properties. Chem. Res. Chin. Univ. 33:1 (2017) 1-6.
[45] S. E. Al Garni, A. A. A. Darwish, Photovoltaic performance of TCVA-InSe hybrid solar cells based on nanostructure films. Sol. Energy Mater. Sol. Cells 160 (2017) 335-339.
[46] C. Masquelier, L. Croguennec, Polyanionic (Phosphates, Silicates, Sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. Chem. Rev. 113 (2013) 6552-6591.
[47] D. Kumar, S. K. Sharma, S. Verma, V. Sharma, V. Kumar, A short review on rare earth doped NaYF4 upconverted nanomaterials for solar cell applications, Mater. Today: Proc. 21 (2020) 1868-1874. https://doi.org/10.1016/j.matpr.2020.01.243
[48] A. Ghazy, M. Safdar, M. Lastusaari, H. Savin, M. Karppinen, Advances in upconversion enhanced solar cell performance. Sol. Energy Mater. Sol. Cells 230 (2021) 111234.
[49] R. Jose, V. Thavasi, S. Ramakrishna, Metal oxides for dye-sensitized solar cells. J. Am. Ceram. Soc. 92 (2009) 289-301.
[50] N. G. Park, J. van de Lagemaat, A. J. Frank, Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells. J. Phys. Chem. B 104:38 (2000) 8989-8994.
[51] D. Kabir, T. Forhad, W. Ghann, B. Richards, M. M. Rahman, M. N. Uddin, M. R. J. Rakib, M. H. Shariare, F. I. Chowdhury, M. M. Rabbani, N. M. Bahadur, Dye-sensitized solar cell with plasmonic gold nanoparticles modified photoanode. Nano-Struct. Nano-Objects 26 (2021) 100698.
[52] Y. Wang, P. Yang, L. Zheng, X. Shi, H. Zheng, Carbon nanomaterials with sp or/and sp hybridization in energy conversion and storage applications: A review. Energy Storage Mater. 26 (2020) 349-370.
[53] T. G. Novak, J. Kim, S. H. Song, G. H. Jun, H. Kim, M. S. Jeong, S. Jeon, Fast P3HT Exciton Dissociation and Absorption Enhancement of Organic Solar Cells by PEG-Functionalized Graphene Quantum Dots. Small, 12 (2016) 994-999. doi:10.1002/smll.201503108
[54] J. Ryu, J.W. Lee, H. Yu, J. Yun, K. Lee, J. Lee, D. Hwang, J. Kang, S.K. Kim, and J. Jang, “Size effects of a graphene quantum dot modified-blocking TiO2 layer for efficient planar perovskite solar cells,” J. Mater. Chem. A, vol. 5, pp. 16834-16842, 2017.
[55] S. Alwin, S. Shajan, Aerogels: promising nanostructured materials for energy conversion and storage applications. Mater. Renew. Sustain. Energy 9:2 (2020) 1-27. doi:10.1007/s40243-020-00168-4
[56] L. Baia, A. Peter, V. Cosoveanu, E. Indrea, M. Baia, J. Popp, and V. Danciu, Synthesis and nanostructural characterization of TiO2 aerogels for photovoltaic devices. Thin Solid Films 511 (2006) 512-516.
[57] J. J. Pietron, A. M. Stux, R. S. Compton, D. R. Rolison, Dyesensitized titania aerogels as photovoltaic electrodes for electrochemical solar cells. Sol. Energy Mater. Sol. Cells 91:12 (2007) 1066-1074.
[58] Y.-C. Chiang, W.-Y. Cheng, and S.-Y. Lu, Titania aerogels as a superior mesoporous structure for photoanodes of dye-sensitized solar cells. Int. J. Electrochem. Sci. 7 (2012) 6910-6919.
[59] S. Alwin, X. S. Shajan, R. Menon, P. Nabhiraj, K. Warrier, G. M. Rao, Surface modification of titania aerogel films by oxygen plasma treatment for enhanced dye adsorption. Thin Solid Films 595 (2015) 164-170.
[60] B. Mu, M. Li, Synthesis of novel form-stable composite phase change materials with modified graphene aerogel for solar energy conversion and storage. Sol. Energy Mater. Sol. Cells 191 (2019) 466-475.
[61] V. Sharma, I. Singh, A. Chandra, Hollow nanostructures of metal oxides as next generation electrode materials for supercapacitors. Sci. Rep. 8:1 (2018) 1-12.
[62] M. B. Gholivand, H. Heydari, A. Abdolmaleki, H. Hosseini, Nanostructured CuO/PANI composite as supercapacitor electrode material. Mater. Sci. Semicond. Proc. 30 (2015) 157-161.
[63] M. Ates, M. A. Serin, I. Ekmen, and Y. N. Ertas, Supercapacitor behaviors of polyaniline/CuO, polypyrrole/CuO and PEDOT/CuO nanocomposites. Polym. Bull. 72 (2015) 2573-2589.
[64] Y. Zhang, Z. Shang, M. Shen, S. P. Chowdhury, A. Ignaszak, S. Sun, Y. Ni, Cellulose Nanofibers/Reduced Graphene Oxide/Polypyrrole Aerogel Electrodes for High-Capacitance Flexible All-Solid-State Supercapacitors. ACS Sustainable Chem. Eng. 7:13 (2019) 11175-11185.
[65] A. Rahman, Solaiman, T. Foyez, M. A. B. H. Susan, A. B. Imran, Self‐Healable and Conductive Double‐Network Hydrogels with Bioactive Properties. Macromol. Chem. Phys. 221:7 (2020) 2000207.
[66] A. Moretti, M. Secchiaroli, D. Buchholz, G. Giuli, R. Marassi, S. Passerini, Exploring the low voltage behavior of V2O5 aerogel as intercalation host for sodium ion battery. J. Electrochem. Soc. 162:14 (2015) A2723-A2728.
[67] R. P. Maloney, H. J. Kim, J. S. Sakamoto, Lithium titanate aerogel for advanced lithium-ion batteries. ACS Appl. Mater. Interfaces 4:5 (2012) 2318-232.
[68] W. Qi, J. G. Shapter, Q. Wu, T. Yin, G. Gao, D. Cui, Nanostructured anode materials for lithium-ion batteries: principle, recent progress and future perspectives. J. Mater. Chem. A 5(37) (2017) 19521-19540.
[69] J. B. Gerken, J. Y. C. Chen, R. C. Massé, A. B. Powell, S. S. Stahl, Development of an O2-Sensitive Fluorescence-Quenching Assay for the Combinatorial Discovery of Electrocatalysts for Water Oxidation. Angew. Chem. Int. Ed. 51 (2012) 6676-6680.
[70] N. F. Raduwan, N. Shaari, S. K. Kamarudin, M. S. Masdar, R. M. Yunus, An overview of nanomaterials in fuel cells: Synthesis method and application. Int. J. Hydrog. Energy 47 (2022) 18468-18495.
[71] P. Kumar, K. Dutta, S. Das, P. P. Kundu, An overview of unsolved deficiencies of direct methanol fuel cell technology: factors and parameters affecting its widespread use. Int. J. Energy Res. 38 (2014) 1367e1390. https://doi.org/10.1002/er.3163.
[72] A.S. Aricò, S. Srinivasan, V. Antonucci, DMFCs: From fundamental aspects to technology development. Fuel Cells 1 (2001) 133e161. https://doi.org/10.1002/1615-6854(200107)1:2<133::AID-FUCE133>3.0.CO;2-5.