Overview of Nanotechnology in Food Sciences
Ritika Arora, Rizwana, Saroj Kumar Shukla
Innovations in materials science at nanoscale has produced the wide range for pristine and hybrid materials with high chemical reactivity, surface area and tunable physical properties to use as food preservatives, packaging materials, monitoring of adulterant and contaminants as well as reuse of waste foods. The present chapter presents the overview of advances in nanotechnology and its application for preparation of different types of nano materials with controlled composition, morphology, crystallinity and structural alignment. Further, the applications of these nanomaterials in different food industries, consumers and service providers are discussed with suitable scheme and illustrations as preservatives, nutraceuticals, packaging and degradation of food wastes.
Keywords
Nanotechnology, Nanomaterials, Food Preservatives, Nutraceuticals, Packaging
Published online , 28 pages
Citation: Ritika Arora, Rizwana, Saroj Kumar Shukla, Overview of Nanotechnology in Food Sciences, Materials Research Foundations, Vol. 148, pp 276-303, 2023
DOI: https://doi.org/10.21741/9781644902554-10
Part of the book on Applications of Emerging Nanomaterials and Nanotechnology
References
[1] P. Ningthoujam, B. Jena, S. Pattanayak, S. Dash, M.K. Panda, R.K. Behera, N.K. Dhal, Y.D. Singh, Nanotechnology in food science. Bio-Nano Interface: Applications in Food, Healthcare and Sustainability. Singapore: Springer Singapore (2021) 59-73. https://doi.org/10.1007/978-981-16-2516-9_4
[2] R.Dobrucka, Application of Nanotechnology in Food Packaging, J microbiol biotechnol food sci 3 (2014)353-359.
[3] O. Bashir, S.A. Bhat, A. Basharat, M. Qamar, S.A. Qamar, M. Bilal, H.M. Iqbal Nano-engineered materials for sensing food pollutants: Technological advancements and safety issues, Chemosphere 292 (2022) 133320. https://doi.org/10.1016/j.chemosphere.2021.133320
[4] S.H. Nile, V. Baskar, D. Selvaraj, A. Nile, J. Xiao, G. Kai, Nanotechnologies in food science: applications, recent trends, and future perspectives, Nano-Micro Lett (12),(2020)1-34. https://doi.org/10.1007/s40820-020-0383-9
[5] R. K. Sastry, S. Anshul, N.H. Rao, Nanotechnology in food processing sector-An assessment of emerging trends, J Food Sci Technol. 50(2013)831-841. https://doi.org/10.1007/s13197-012-0873-y
[6] T. Singh, S. Shukla, P. Kumar, V. Wahla, V.K. Bajpai, I.S. Rather, Application of nanotechnology in food science: perception and overview, Front Microbiol. (8), (2017)1501. https://doi.org/10.3389/fmicb.2017.01501
[7] A. Ali, S. Ahmed, Recent advances in edible polymer based hydrogels as a sustainable alternative to conventional polymers, J Agric Food Chem. 66(27), (2018)6940-6967. https://doi.org/10.1021/acs.jafc.8b01052
[8] S. Farris, K.M. Schaich, L. Liu, L. Piergiovanni, K.L. Yam, Development of polyion-complex hydrogels as an alternative approach for the production of bio-based polymers for food packaging applications: a review, Trends Food Sci Technol 20(8),(2009) 316-332. https://doi.org/10.1016/j.tifs.2009.04.003
[9] M.S. Umekar, G.S. Bhusari, A.K. Potbhare, A. Mondal, B.P. Kapgate, M.F. Desimone, R.G. Chaudhary, Bioinspired reduced graphene oxide based nanohybrids for photocatalysis and antibacterial applications, Curr Pharm Biotechnol 22(13),(2021)1759-1781. https://doi.org/10.2174/1389201022666201231115826
[10] V.K. Bajpai, M. Kamle, S. Shukla, D.K. Mahato, P. Chandra, S.K. Hwang, Y.K. Han, Prospects of using nanotechnology for food preservation, safety, and security, J Food Drug Anal 26(4),(2018)1201-1214. https://doi.org/10.1016/j.jfda.2018.06.011
[11] S. Murugadoss, D. Lison, L. Godderis, S. Van Den Brule, J. Mast, F. Brassinne, N. Sebaihi, P.H. Hoet, Toxicology of silica nanoparticles: an update, Arch Toxicol 91(9),(2017) 2967-3010. https://doi.org/10.1007/s00204-017-1993-y
[12] S.K. Paul, H. Dutta, S. Sarkar, L.N. Sethi, S.K. Ghosh, Nanosized zinc oxide: Super-functionalities, present scenario of application, safety issues, and future prospects in food processing and allied industries, Food Rev Int 35(6),(2019)505-535 https://doi.org/10.1080/87559129.2019.1573828
[13] A.Q. Truong-Tran, J. Carter, R.E. Ruffin, P.D. Zalewski, The role of zinc in caspase activation and apoptotic cell death, Zinc Biochemistry, Physiology, and Homeostasis: Recent Insights and Current Trends (2001)129-144 https://doi.org/10.1007/978-94-017-3728-9_7
[14] R. Bagade, A.K. Potbhare, R.G. Chaudhary, A. Mondal, M. Desimone, R. Mishra, H.D. Juneja, Microspheres/Custard-Apples Copper (II) Chelate Polymer: Characterization, Docking, Antioxidant and Antibacterial Assay, ChemistrySelect, 4 (20), (2019)6233-6244. https://doi.org/10.1002/slct.201901115
[15] Q Hu, Y Luo, Chitosan-based nanocarriers for encapsulation and delivery of curcumin: A review, Int J Biol Macromol 179,(2021)125-135 https://doi.org/10.1016/j.ijbiomac.2021.02.216
[16] S.K. Pyne, K. Paria, S.M. Mandal, P.P. Srivastav, P. Bhattacharjee, T.K. Barik, Green microalgae derived organic nanodots used as food preservative, Current Research in Green and Sustainable Chemistry (2022)100276. https://doi.org/10.1016/j.crgsc.2022.100276
[17] J.A. Tanna, R.G. Chaudhary, H.D. Juneja, N.V. Gandhare, A.R. Rai, Histidine capped ZnO nanoparticles: an efficient synthesis, characterization and effective antibacterial activity, BioNanoScience, (5),(2015)123-134. https://doi.org/10.1007/s12668-015-0170-0
[18] A. Grasso, M. Ferrante, A. Moreda-Piñeiro, G. Arena, R. Magarini, G.O. Conti, C. Copat, Dietary exposure of zinc oxide nanoparticles (ZnO-NPs) from canned seafood by single particle ICP-MS: Balancing of risks and benefits for human health, Ecotoxicol Environ Saf 231(2022)113217. https://doi.org/10.1016/j.ecoenv.2022.113217
[19] W.J. Chong, S. Shen, Y. Li, A. Trinchi, D. Pejak, I.L. Kyratzis, C. Wen, Additive manufacturing of antibacterial PLA-ZnO nanocomposites: Benefits, limitations and open challenges, J Mater Sci Technol 111(2022)120-151 https://doi.org/10.1016/j.jmst.2021.09.039
[20] X. Hou, J. Liang, X. Yang, J. Bai, M. Yang, N. Qiao, Y. Shi, Poloxamer188-based Nanoparticles Improve the Anti-oxidation and Anti-degradation of Curcumin, Food Chem (375),(2022)131674 https://doi.org/10.1016/j.foodchem.2021.131674
[21] R. Marion-Letellier, A. Amamou, G. Savoye, S. Ghosh, Inflammatory bowel diseases and food additives: to add fuel on the flames!, Nutrients 11(5), (2019)1111 https://doi.org/10.3390/nu11051111
[22] H. Zhou, D.J. McClements, Recent advances in the gastrointestinal fate of organic and inorganic nanoparticles in foods, Nanomater 12(7), (2022)1099 https://doi.org/10.3390/nano12071099
[23] S. Siemer, A. Hahlbrock, C. Vallet, DJ McClements, J. Balszuweit, J. Voskuhl, R.H. Stauber, Nanosized food additives impact beneficial and pathogenic bacteria in the human gut: a simulated gastrointestinal study, NPJ Sci Food 2(1),(2018)1-10 https://doi.org/10.1038/s41538-018-0030-8
[24] A.R. Singh, P.K. Desu, R.K. Nakkala, V. Kondi, S. Devi, M.S. Alam, P. Kesharwani, Nanotechnology-based approaches applied to nutraceuticals, Drug Deliv Transl Res (2021)1-15 https://doi.org/10.1007/s13346-021-00960-3
[25] N. Noor, A. Gani, F. Jhan, M.A. Shah, Z. ul Ashraf, Ferulic acid loaded pickering emulsions stabilized by resistant starch nanoparticles using ultrasonication: Characterization, in vitro release and nutraceutical potential, Ultrason Sonochem 84,(2022)105967 https://doi.org/10.1016/j.ultsonch.2022.105967
[26] L. Chabib, A. Suryani, S.N.P. Hakim, M.I. Rizki, F. Firmansyah, F. Romadhonsyah, IAI SPECIAL EDITION: Stevia rebaudiana as a nutraceutical for COVID-19 patients with no sugar diet during recovery and its nanoparticle application, Pharm Educ 22(2),(2022)174-179 https://doi.org/10.46542/pe.2022.222.174179
[27] H. Zhou, D.J. McClements, Recent advances in the gastrointestinal fate of organic and inorganic nanoparticles in foods, Nanomater 12(7) (2022)1099 https://doi.org/10.3390/nano12071099
[28] PM Reque, A. Brandelli, Encapsulation of probiotics and nutraceuticals: Applications in functional food industry, Trends Food Sci Technol, 114(2021)1-10 https://doi.org/10.1016/j.tifs.2021.05.022
[29] S. Manocha, S. Dhiman, A.S. Grewal, K. Guarve, Nanotechnology: An approach to overcome bioavailability challenges of nutraceuticals, J Drug Deliv Sci Techno (2022)103418 https://doi.org/10.1016/j.jddst.2022.103418
[30] J. Siddiqui, M. Taheri, A.U. Alam, M.J. Deen, Nanomaterials in smart packaging applications: a review, Small 18(1),(2022)2101171. https://doi.org/10.1002/smll.202101171
[31] M. Sahoo, S. Vishwakarma, C. Panigrahi, J. Kumar, Nanotechnology: Current applications and future scope in food, Food Frontiers 2(1), (2021)3-22. https://doi.org/10.1002/fft2.58
[32] P. Chaudhary, F. Fatima, A. Kumar, Relevance of nanomaterials in food packaging and its advanced future prospects, J Inorg Organomet Polym 30,(2020) 5180-5192. https://doi.org/10.1007/s10904-020-01674-8
[33] K. Pushparaj, W.C. Liu, A. Meyyazhagan, A. Orlacchio, M. Pappusamy, C. Vadivalagan, A.A. Robert, V.A. Arumugam, H. Kamyab, JJ Klemeš, T. Khademi, Nano-from nature to nurture: A comprehensive review on facets, trends, perspectives and sustainability of nanotechnology in the food sector, Energy 240(2022) 122732. https://doi.org/10.1016/j.energy.2021.122732
[34] A. Erfani, M.K. Pirouzifard, H. Almasi, N. Gheybi, S. Pirsa, Application of cellulose plate modified with encapsulated Cinnamomum zelanicum essential oil in active packaging of walnut kernel. Food Chem. 381(2022)132246. https://doi.org/10.1016/j.foodchem.2022.132246
[35] K. Ma, T. Zhe, F. Li, Y. Zhang, M. Yu, R. Li, L. Wang, Sustainable films containing AIE-active berberine-based nanoparticles: A promising antibacterial food packaging, Food Hydrocoll 123(2022) 107147. https://doi.org/10.1016/j.foodhyd.2021.107147
[36] W. Dong, J. Su, Y. Chen, D. Xu, L. Cheng, L. Mao, F. Yuan, Characterization and antioxidant properties of chitosan film incorporated with modified silica nanoparticles as an active food packaging, Food Chem 373(2022) 131414. https://doi.org/10.1016/j.foodchem.2021.131414
[37] T. Gasti, S. Dixit, V.D. Hiremani, R.B. Chougale, S.P. Masti, S.K. Vootla, B.S. Mudigoudra, Chitosan/pullulan based films incorporated with clove essential oil loaded chitosan-ZnO hybrid nanoparticles for active food packaging, Carbohydr Polym 277(2022)118866. https://doi.org/10.1016/j.carbpol.2021.118866
[38] P.J.P. Espitia, N.D.F.F. Soares, J.S.D.R. Coimbra, N.J. de Andrade, R.S. Cruz, E.A.A. Medeiros, Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications, Food Bioproc Tech 5(5),(2012)1447-1464. https://doi.org/10.1007/s11947-012-0797-6
[39] K.K. Dash, P. Deka, S.P. Bangar, V. Chaudhary, M. Trif, A. Rusu, Applications of inorganic nanoparticles in food packaging: A Comprehensive Review, Polymers 14(3),(2022)521. https://doi.org/10.3390/polym14030521
[40] M. Hoseinnejad, S.M. Jafari, I. Katouzian, Inorganic and metal nanoparticles and their antimicrobial activity in food packaging applications, Crit Rev Microbiol 44(2),(2018)161-181. https://doi.org/10.1080/1040841X.2017.1332001
[41] C. Xu, M. Nasrollahzadeh, M. Selva, Z. Issaabadi, R. Luque, Waste-to-wealth: Biowaste valorization into valuable bio (nano) materials, Chem Soc Rev 48(18),(2019) 4791-4822. https://doi.org/10.1039/C8CS00543E
[42] E. Uçkun Kıran, A.P. Trzcinski, Y. Liu, Platform chemical production from food wastes using a biorefinery concept, J Chem Technol Biotechnol 90(8), (2015)1364-1379. https://doi.org/10.1002/jctb.4551
[43] C.S.K. Lin, L.A. Pfaltzgraff, L. Herrero-Davila, E.B. Mubofu, S. Abderrahim, J.H. Clark, R. Luque, Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective, Energy Environ Sci 6(2),(2013) 426-464. https://doi.org/10.1039/c2ee23440h
[44] T.M. Fagieh, E.M. Bakhsh, S.B. Khan, K. Akhtar, A.M. Asiri, Alginate/banana waste beads supported metal nanoparticles for efficient water remediation, Polymers 13(23),(2021)4054. https://doi.org/10.3390/polym13234054
[45] B. Zhang, H. Li, L. Chen, T. Fu, B. Tang, Y. Hao, J. Li, Z. Li, B. Zhang, Q. Chen, C. Nie, Recent advances in the bioconversion of waste straw biomass with steam explosion technique: A comprehensive review, Processes 10(10), (2022)1959. https://doi.org/10.3390/pr10101959
[46] N. El-Desouky, K. Shoueir, I. El-Mehasseb, M. El-Kemary, Synthesis of silver nanoparticles using bio valorization coffee waste extract: photocatalytic flow-rate performance, antibacterial activity, and electrochemical investigation, Biomass Convers Bioref (2022)1-15. https://doi.org/10.1007/s13399-021-02256-5
[47] D. Kavaz, Synthesis of silica nanoparticles from agricultural waste, Agri-Waste and Microbes for Production of Sustainable Nanomaterials. Elsevier, (2022) 121-138. https://doi.org/10.1016/B978-0-12-823575-1.00028-7
[48] M. Pakdel, Z. Moosavi-Nejad, R.K. Kermanshahi, H. Hosano, Self-assembled uniform keratin nanoparticles as building blocks for nanofibrils and nanolayers derived from industrial feather waste, J Clean Prod (2022)130331. https://doi.org/10.1016/j.jclepro.2021.130331
[49] Z. Dong, H. Guo, M. Zhang, D. Xia, X. Yin, J. Lv, Enhancing biomethane yield of coal in anaerobic digestion using iron/copper nanoparticles synthesized from corn straw extract, Fuel 319(2022)123664. https://doi.org/10.1016/j.fuel.2022.123664
[50] R.A. Omar, D. Chauhan, N. Talreja, R.V. Mangalaraja, M. Ashfaq, Vegetables waste for biosynthesis of various nanoparticles, Agri-Waste and Microbes for Production of Sustainable Nanomaterials. Elsevier, (2022) 281-298. https://doi.org/10.1016/B978-0-12-823575-1.00014-7
[51] M. Yadav, N. Pareek, V. Vivekanand, Eggshell and fish/shrimp wastes for synthesis of bio-nanoparticles, Agri-Waste and Microbes for Production of Sustainable Nanomaterials. Elsevier, (2022) 259-280. https://doi.org/10.1016/B978-0-12-823575-1.00002-0
[52] K. Shoueir, A. Mohanty, I. Janowska, Industrial molasses waste in the performant synthesis of few-layer graphene and its Au/Ag nanoparticles nanocomposites, J Clean Prod 351(2022)131540. https://doi.org/10.1016/j.jclepro.2022.131540
[53] M. Yadav, N. Pareek, V. Vivekanand, Eggshell and fish/shrimp wastes for synthesis of bio-nanoparticles, Agri-Waste and Microbes for Production of Sustainable Nanomaterials. Elsevier, (2022) 259-280. https://doi.org/10.1016/B978-0-12-823575-1.00002-0
[54] C.S.K. Lin, L.A. Pfaltzgraff, L. Herrero-Davila, E.B. Mubofu, S. Abderrahim, J.H. Clark, R. Luque, Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective, Energy Environ Sci 6(2), (2013)426-464. https://doi.org/10.1039/c2ee23440h
[55] N. Tavker, M. Sharma, Nanosensors for intelligent food packaging, Nanosensors for Smart Agriculture, Elsevier, 2022. 737-756. https://doi.org/10.1016/B978-0-12-824554-5.00014-8
[56] A. Mondal, M.S. Umekar, G.S. Bhusari, S. Mondal, R.G. Chaudhary, M. Sami, Biogenic synthesis of metal/metal oxide nanostructured materials, Curr. Pharm. Biotechnol, 22 (2022)1782-1793. https://doi.org/10.2174/1389201022666210111122911
[57] S. Radoor, J. Karayil, J.M. Shivanna, A. Jayakumar, S.A. Varghese, R.E. Krishnankutty, J. Parameswaranpillai, S. Siengchin, Environmental and Toxicological Aspects of Nanostructures in Food Packaging, Nanotechnology‐Enhanced Food Packaging (2022)361-378. https://doi.org/10.1002/9783527827718.ch15
[58] V.G.L. Souza, A.L. Fernando, Nanoparticles in food packaging: biodegradability and potential migration to food: a review, Food Packag Shelf Life 8(2016)63-70. https://doi.org/10.1016/j.fpsl.2016.04.001
[59] A. Ashfaq, N. Khursheed, S. Fatima, Z. Anjum, K. Younis, Application of nanotechnology in food packaging: Pros and Cons, J Agric Food Inf (2022)100270. https://doi.org/10.1016/j.jafr.2022.100270