Artificial Intelligence Applications in Solar Photovoltaic Renewable Energy Systems

$30.00

Artificial Intelligence Applications in Solar Photovoltaic Renewable Energy Systems

Ifeanyi Michael Smarte Anekwe, Emmanuel Kweinor Tetteh, Edward Kwaku Armah

With the increasing reduction of fossil fuel supplies, it is predicted that the world would run out of energy resources within the next few decades attributed to the depletion of fossil fuels. Renewable energy sources generate electricity with minimal contribution of CO2 or other greenhouse gases to the atmosphere. Solar, wind, hydroelectricity, and biomass are the most common kinds of sustainable energy sources, and all of them have enormous prospects to help the world to meet its future energy demand. The solar photovoltaic technique is among the first of several renewable energy systems that have been implemented around the world to meet the basic requirement of electricity, especially in remote regions. The deployment of Artificial Intelligence in the energy sector is becoming more prevalent to ensure an effective energy supply. This chapter presents a review of the application of artificial intelligence in a solar PV system while highlighting the challenges and prospects for effective utilization in the renewable energy system.

Keywords
Artificial Intelligence, Deep Learning, Internet of Things, Machine Learning, Renewable Energy, Solar Energy, Solar Photovoltaic

Published online , 41 pages

Citation: Ifeanyi Michael Smarte Anekwe, Emmanuel Kweinor Tetteh, Edward Kwaku Armah, Artificial Intelligence Applications in Solar Photovoltaic Renewable Energy Systems, Materials Research Foundations, Vol. 147, pp 47-86, 2023

DOI: https://doi.org/10.21741/9781644902530-3

Part of the book on Application of Artificial Intelligence in New Materials Discovery

References
[1] L. Bastida, J. J. Cohen, A. Kollmann, A. Moya, J. Reichl, Exploring the role of ICT on household behavioural energy efficiency to mitigate global warming, Renewable and Sustainable Energy Reviews. 103 (2019) 455-462. https://doi.org/10.1016/j.rser.2019.01.004
[2] A.Q.A. Shetwi, M. Hannan, K.P. Jern, M. Mansur, T. Mahlia, Grid-connected renewable energy sources: Review of the recent integration requirements and control methods, Journal of Cleaner Production. 253 (2020) 119831. https://doi.org/10.1016/j.jclepro.2019.119831
[3] I. IRENA, Renewable power generation costs in 2017, Report, International Renewable Energy Agency, Abu Dhabi, 2018.
[4] O.A.A. Shahri, F.B. Ismail, M.A. Hannan, M.S.H. Lipu, A.Q.A. Shetwi, R.A. Begum, N.F.O.A. Muhsen, E. Soujeri, Solar photovoltaic energy optimization methods, challenges and issues: A comprehensive review, Journal of Cleaner Production. 284 (2021) 125465. https://doi.org/10.1016/j.jclepro.2020.125465
[5] A. Harrouz, M. Abbes, I. Colak, K. Kayisli, Smart grid and renewable energy in Algeria, in IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA), 2017, pp. 1166-1171. https://doi.org/10.1109/ICRERA.2017.8191237
[6] H. Lund, B.V. Mathiesen, Energy system analysis of 100% renewable energy systems-The case of Denmark in years 2030 and 2050, Energy 34 (2009) 524-531. https://doi.org/10.1016/j.energy.2008.04.003
[7] A. Qazi, F. Hussain, N.A. Rahim, G. Hardaker, D. Alghazzawi, K. Shaban, K. Haruna, Towards sustainable energy: A systematic review of renewable energy sources, technologies, and public opinions, IEEE access. 7 (2019) 63837-63851. https://doi.org/10.1109/ACCESS.2019.2906402
[8] H.M.A. Maamary, H.A. Kazem, M.T. Chaichan, Renewable energy and GCC States energy challenges in the 21st century: A review, International Journal of Computation and Applied Sciences. 2 (2017) 11-18. https://doi.org/10.24842/1611/0018
[9] M.A. Hannan, Z.A. Ghani, M.M. Hoque, M.S.H. Lipu, A fuzzy-rule-based PV inverter controller to enhance the quality of solar power supply: Experimental test and validation, Electronics 8 (2019) 1335. https://doi.org/10.3390/electronics8111335
[10] IEA, “World Energy Outlook 2015,” 2015. https://www.iea.org/reports/world-energy-outlook-2015
[11] I. E. A. IEA, “Key World Energy Statistics 2020,” Paris, 2020. https://www.iea.org/reports/key-world-energy-statistics-2020/transformation
[12] M. Gul, Y. Kotak, T. Muneer, Review on recent trend of solar photovoltaic technology, Energy Exploration & Exploitation 34 (2016) 485-526. https://doi.org/10.1177/0144598716650552
[13] A. K. Raturi, “Renewables 2019 Global Status Report,” 2019.
[14] A. Mellit, S.A. Kalogirou, Artificial intelligence techniques for photovoltaic applications: A review, Progress in energy and combustion science 34 (2008) 574-632. https://doi.org/10.1016/j.pecs.2008.01.001
[15] R. Belu, Artificial intelligence techniques for solar energy and photovoltaic applications, in: M.K. Pour, S. Clarke, M.E. Jennex, A.V. Anttiroiko, S. Kamel, I. Lee, J. Kisielnicki, A. Gupta, C.V. Slyke, J. Wang, V. Weerakkody (Eds.), Robotics: Concepts, methodologies, tools, and applications, IGI Global., 2014, pp. 1662-1720. https://doi.org/10.4018/978-1-4666-4607-0.ch081
[16] A.T. Lahiani, A.B.B. Abdelghani, I.S. Belkhodja, Fault detection and monitoring systems for photovoltaic installations: A review, Renewable and Sustainable Energy Reviews 82 (2018) 2680-2692. https://doi.org/10.1016/j.rser.2017.09.101
[17] A. Mellit, G.M. Tina, S.A. Kalogirou, Fault detection and diagnosis methods for photovoltaic systems: A review, Renewable and Sustainable Energy Reviews 91 (2018) 1-17. https://doi.org/10.1016/j.rser.2018.03.062
[18] S.R. Madeti, S. Singh, A comprehensive study on different types of faults and detection techniques for solar photovoltaic systems, Solar Energy 158 (2017) 161-185. https://doi.org/10.1016/j.solener.2017.08.069
[19] A.Y. Appiah, X. Zhang, B.B.K. Ayawli, F. Kyeremeh, Review and performance evaluation of photovoltaic array fault detection and diagnosis techniques, International Journal of Photoenergy 2019 (2019) 6953530. https://doi.org/10.1155/2019/6953530
[20] I.U. Khalil, A.U. Haq, Y. Mahmoud, M. Jalal, M. Aamir, K. Mehmood, Comparative analysis of photovoltaic faults and performance evaluation of its detection techniques, IEEE Access 8 (2020) 26676-26700. https://doi.org/10.1109/ACCESS.2020.2970531
[21] M.M. Rahman, J. Selvaraj, N.A. Rahim, M. Hasanuzzaman, Global modern monitoring systems for PV based power generation: A review, Renewable and Sustainable Energy Reviews 82 (2018) 4142-4158. https://doi.org/10.1016/j.rser.2017.10.111
[22] A. Hamied, A. Boubidi, N. Rouibah, W. Chine, A. Mellit, IoT-Based smart photovoltaic arrays for remote sensing and fault identification, in: M. Hatti (Eds.), Smart Energy Empowerment in Smart and Resilient Cities, Springer International Publishing, 2020, pp. 478-486. https://doi.org/10.1007/978-3-030-37207-1_51
[23] G. Wheatley, R.I. Rubel, Design improvement of a laboratory prototype for efficiency evaluation of solar thermal water heating system using phase change material (PCMs), Results in Engineering 12 (2021) 100301. https://doi.org/10.1016/j.rineng.2021.100301
[24] C.C. Kung, J.E. Mu, Prospect of China’s renewable energy development from pyrolysis and biochar applications under climate change, Renewable and Sustainable Energy Reviews 114 (2019) 109343. https://doi.org/10.1016/j.rser.2019.109343
[25] M. Romero, J.G. Aguilar, E. Zarza, Concentrating solar thermal power, in: D.Y. Goswami, F. Kreith (Eds.), Energy Efficiency and Renewable Energy Handbook, CRC press, 2015, pp. 1261-1370. https://doi.org/10.1201/b18947-51
[26] A. Chatterjee, D.M. DeLorenzo, R. Carr, T.S. Moon, Bioconversion of renewable feedstocks by Rhodococcus opacus, Current opinion in biotechnology 64 (2020) 10-16. https://doi.org/10.1016/j.copbio.2019.08.013
[27] E.A. Williams, M.O. Raimi, E.I. Yarwamara, O. Modupe, Renewable energy sources for the present and future: An alternative power supply for Nigeria, Energy and Earth Science 2 (2019) 18-44. https://doi.org/10.22158/ees.v2n2p18
[28] H.M. Steinhagen, Concentrating solar thermal power, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371 (2013) 20110433. https://doi.org/10.1098/rsta.2011.0433
[29] K.M. Powell, K. Rashid, K. Ellingwood, J. Tuttle, B.D. Iverson, Hybrid concentrated solar thermal power systems: A review, Renewable and Sustainable Energy Reviews 80 (2017) 215-237. https://doi.org/10.1016/j.rser.2017.05.067
[30] M. Romero, A. Steinfeld, Concentrating solar thermal power and thermochemical fuels, Energy & Environmental Science 5 (2012) 9234-9245. https://doi.org/10.1039/c2ee21275g
[31] I. Purohit, P. Purohit, Technical and economic potential of concentrating solar thermal power generation in India, Renewable and Sustainable Energy Reviews 78 (2017) 648-667. https://doi.org/10.1016/j.rser.2017.04.059
[32] J. Li, Scaling up concentrating solar thermal technology in China, Renewable and Sustainable Energy Reviews 13 (2009) 2051-2060. https://doi.org/10.1016/j.rser.2009.01.019
[33] A. Sawner, S. Shukla, Application of “PVsyst” to simulate the 100 kWp Rooftop solar grid-tied PV System at college campus: Jabalpur Engineering College, India, 5th International Conference on Electrical, Electronics, Communication, Computer Technologies and Optimization Techniques (ICEECCOT), 2021, pp. 455-459. https://doi.org/10.1109/ICEECCOT52851.2021.9707970
[34] S. Sinha, S.S. Jasial, G. Sinha, Optimization of solar energy storage in a battery for hybrid photovoltaic system,” EasyChair, 2516-2314, 2020.
[35] R. Dash, S. Swain, Battery Storage Photovoltaic Grid-Interconnected System: Part-IV,” in Proceedings of the International Conference on Soft Computing Systems, 2016, Springer, pp. 799-807. https://doi.org/10.1007/978-81-322-2671-0_75
[36] K.S.S. Pundir, N. Varshney, G. Singh, Comparative study of performance of grid connected solar photovoltaic power system in IIT Roorkee campus, in International Conference on Innovative Trends in Science, Engineering and Management, New Delhi, India, 2016, pp. 422-31.
[37] F.P.G. Márquez, A.P. Gonzalo, A comprehensive review of Artificial Intelligence and wind energy, Archives of Computational Methods in Engineering 29 (2021) 2935-2958. https://doi.org/10.1007/s11831-021-09678-4
[38] A. Mellit, S. Kalogirou, Artificial intelligence and internet of things to improve efficacy of diagnosis and remote sensing of solar photovoltaic systems: Challenges, recommendations and future directions, Renewable and Sustainable Energy Reviews 143 (2021) 110889. https://doi.org/10.1016/j.rser.2021.110889
[39] T. Ahmad, D. Zhang, C. Huang, H. Zhang, N. Dai, Y. Song, H. Chen, Artificial intelligence in sustainable energy industry: Status Quo, challenges and opportunities, Journal of Cleaner Production 289 (2021) 125834. https://doi.org/10.1016/j.jclepro.2021.125834
[40] A. Mellit, S.A. Kalogirou, L. Hontoria, S. Shaari, Artificial intelligence techniques for sizing photovoltaic systems: A review, Renewable and Sustainable Energy Reviews 13 (2009) 406-419. https://doi.org/10.1016/j.rser.2008.01.006
[41] O.A.A. Shahri, F.B. Ismail, M.A. Hannan, M.S.H. Lipu, A.Q.A. Shetwi, R.A. Begum, N.F.O.A. Muhsen, E. Soujeri, Solar photovoltaic energy optimization methods, challenges and issues: A comprehensive review, Journal of Cleaner Production 284 (2021) 125465. https://doi.org/10.1016/j.jclepro.2020.125465
[42] S.K. Jha, J. Bilalovic, A. Jha, N. Patel, H. Zhang, Renewable energy: Present research and future scope of Artificial Intelligence, Renewable and Sustainable Energy Reviews 77 (2017) 297-317. https://doi.org/10.1016/j.rser.2017.04.018
[43] R. Belu, Artificial intelligence techniques for solar energy and photovoltaic applications, in: M.K. Pour, S. Clarke, M.E. Jennex, A.V. Anttiroiko, S. Kamel, I. Lee, J. Kisielnicki, A. Gupta, C.V. Slyke, J. Wang, V. Weerakkody (Eds.), Robotics: Concepts, methodologies, tools, and applications, IGI Global, 2014, pp. 1662-1720. https://doi.org/10.4018/978-1-4666-4607-0.ch081
[44] V.S.B. Kurukuru, A. Haque, M.A. Khan, S. Sahoo, A. Malik, F. Blaabjerg, A review on Artificial Intelligence applications for grid-connected solar photovoltaic systems, Energies 14 (2021) 4690. https://doi.org/10.3390/en14154690
[45] J. Feng, X. Feng, J. Chen, X. Cao, X. Zhang, L. Jiao, T. Yu, Generative adversarial networks based on collaborative learning and attention mechanism for hyperspectral image classification, Remote Sensing 12 (2020) 1149. https://doi.org/10.3390/rs12071149
[46] Y. Guo, Y. Liu, A. Oerlemans, S. Lao, S. Wu, M.S. Lew, Deep learning for visual understanding: A review, Neurocomputing 187 (2016) 27-48. https://doi.org/10.1016/j.neucom.2015.09.116
[47] M. Shehab, L. Abualigah, Q. Shambour, M.A.A. Hashem, M.K.Y. Shambour, A.I.A. Salibi, A.H. Gandomi, Machine learning in medical applications: A review of state-of-the-art methods, Computers in Biology and Medicine 145 (2022) 105458. https://doi.org/10.1016/j.compbiomed.2022.105458
[48] P. Mandal, S.T.S. Madhira, J. Meng, R.L. Pineda, Forecasting power output of solar photovoltaic system using wavelet transform and artificial intelligence techniques, Procedia Computer Science 12 (2012) 332-337. https://doi.org/10.1016/j.procs.2012.09.080
[49] V.S.B. Kurukuru, A. Haque, M.A. Khan, S. Sahoo, A. Malik, F. Blaabjerg, A review on Artificial Intelligence applications for grid-Connected solar photovoltaic systems, Energies, 14 (2021) 4690. https://doi.org/10.3390/en14154690
[50] P. Barmpoutis, P. Papaioannou, K. Dimitropoulos, N. Grammalidis, A review on early forest fire detection systems using optical remote sensing, Sensors 20 (2020) 6442. https://doi.org/10.3390/s20226442
[51] A. Mellit, G.M. Tina, S.A. Kalogirou, Fault detection and diagnosis methods for photovoltaic systems: A review, Renewable and Sustainable Energy Reviews 91 (2018) 1-17. https://doi.org/10.1016/j.rser.2018.03.062
[52] C. Ghenai, M. Bettayeb, Modelling and performance analysis of a stand-alone hybrid solar PV/Fuel Cell/Diesel Generator power system for university building, Energy 171 (2019) 180-189. https://doi.org/10.1016/j.energy.2019.01.019
[53] R. Shukla, K. Sumathy, P. Erickson, J. Gong, Recent advances in the solar water heating systems: A review, Renewable and Sustainable Energy Reviews 19 (2013) 173-190. https://doi.org/10.1016/j.rser.2012.10.048
[54] T. Adefarati, R.C. Bansal, Reliability, economic and environmental analysis of a microgrid system in the presence of renewable energy resources, Applied energy 236 (2019) 1089-1114. https://doi.org/10.1016/j.apenergy.2018.12.050
[55] B. Kroposki, Integrating high levels of variable renewable energy into electric power systems, Journal of Modern Power Systems and Clean Energy 5 (2017) 831-837. https://doi.org/10.1007/s40565-017-0339-3
[56] N. Jaloliddinova, R. Sultonov, Renewable sources of energy: Advantages and disadvantages, Достижения науки и образования 8-3 (2019) 49.
[57] M. Faisal, M.A. Hannan, P.J. Ker, A. Hussain, M.B. Mansor, F. Blaabjerg, Review of energy storage system technologies in microgrid applications: Issues and challenges, IEEE Access 6 (2018) 35143-35164. https://doi.org/10.1109/ACCESS.2018.2841407
[58] A.A.B. Rújula, Future development of the electricity systems with distributed generation, Energy 34 (2009) 377-383. https://doi.org/10.1016/j.energy.2008.12.008
[59] M.E. Meral, F. Dinçer, A review of the factors affecting operation and efficiency of photovoltaic based electricity generation systems, Renewable and Sustainable Energy Reviews 15 (2011) 2176-2184. https://doi.org/10.1016/j.rser.2011.01.010
[60] S.A. Kalogirou, Solar Energy Engineering: Processes and Systems, second ed., Academic press, 2013.
[61] A. Verma, S. Singhal, Solar PV performance parameter and recommendation for optimization of performance in large scale grid connected solar PV plant – Case study, Journal of Energy and Power Sources 2 (2015) 40-53.
[62] M.A. Hannan, M.S.H. Lipu, A. Hussain, P.J. Ker, T.M.I. Mahlia, M. Mansor, A. Ayob, M.H. Saad, Z.Y. Dong, Toward enhanced state of charge estimation of Lithium-ion batteries using optimized machine learning techniques, Scientific Reports 10 (2020) 4687. https://doi.org/10.1038/s41598-020-61464-7
[63] S. Sinha, S.S. Chandel, Review of software tools for hybrid renewable energy systems, Renewable and Sustainable Energy Reviews 32 (2014) 192-205. https://doi.org/10.1016/j.rser.2014.01.035
[64] S. Sinha, S.S. Chandel, Review of recent trends in optimization techniques for solar photovoltaic-wind based hybrid energy systems, Renewable and Sustainable Energy Reviews 50 (2015) 755-769. https://doi.org/10.1016/j.rser.2015.05.040
[65] M.A. Hannan, J.A. Ali, A. Mohamed, A. Hussain, Optimization techniques to enhance the performance of induction motor drives: A review, Renewable and Sustainable Energy Reviews 81 (2018) 1611-1626. https://doi.org/10.1016/j.rser.2017.05.240
[66] N. Sulaiman, M.A. Hannan, A. Mohamed, P.J. Ker, E.H. Majlan, W.R.W. Daud, Optimization of energy management system for fuel-cell hybrid electric vehicles: Issues and recommendations, Applied Energy 228 (2018) 2061-2079. https://doi.org/10.1016/j.apenergy.2018.07.087
[67] M.S.H. Lipu, M.A. Hannan, A. Hussain, A. Ayob, M.H.M. Saad, T.F. Karim, D.N.T. How, Data-driven state of charge estimation of lithium-ion batteries: Algorithms, implementation factors, limitations and future trends, Journal of Cleaner Production 277 (2020) 24110. https://doi.org/10.1016/j.jclepro.2020.124110
[68] N.A.A. Razak, M.M. Othman, I. Musirin, Optimal sizing and operational strategy of hybrid renewable energy system using homer, in 4th International Power Engineering and Optimization Conference (PEOCO), 2010, pp. 495-501.
[69] T. Khatib, A. Mohamed, K. Sopian, A review of photovoltaic systems size optimization techniques, Renewable and Sustainable Energy Reviews 22 (2013) 454-465. https://doi.org/10.1016/j.rser.2013.02.023
[70] Y. Eren, İ.B. Küçükdemiral, İ. Üstoğlu, Introduction to optimization, in: O. Erdinc (Eds.), Optimization in Renewable Energy Systems, Elsevier, 2017, pp. 27-74. https://doi.org/10.1016/B978-0-08-101041-9.00002-8
[71] S.A. Kalogirou, Solar thermal collectors and applications, Progress in Energy and Combustion Science 30 (2004) 231-295. https://doi.org/10.1016/j.pecs.2004.02.001
[72] K.K. Nair, J. Jose, A. Ravindran, Analysis of temperature dependent parameters on solar cell efficiency using MATLAB, International Journal of Engineering Development and Research 4 (2016) 536-541.
[73] S. Chander, A. Purohit, A. Sharma, S.P. Nehra, M.S. Dhaka, Impact of temperature on performance of series and parallel connected mono-crystalline silicon solar cells, Energy Reports 1 (2015) 175-180. https://doi.org/10.1016/j.egyr.2015.09.001
[74] Z.A.A. Majid, M.H. Ruslan, K. Sopian, M. Othman, M. Azmi, Study on Performance of 80 Watt Floating Photovoltaic Panel, Journal Of Mechanical Engineering And Sciences 7 (2014) 1150-1156. https://doi.org/10.15282/jmes.7.2014.14.0112
[75] E. Fadhil, The Impact of the Environmental Condition on the Performance of the Photovoltaic Cell, American Journal of Energy Engineering 4 (2016) 1. https://doi.org/10.11648/j.ajee.20160401.11
[76] D.M. Tobnaghi, R. Madatov, D. Naderi, The effect of temperature on electrical parameters of solar cells, International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering 2 (2013) 6404-6407.
[77] F. Dincer, M.E. Meral, Critical factors that affecting efficiency of solar cells, Smart Grid and Renewable Energy 1 (2010) 47-50. https://doi.org/10.4236/sgre.2010.11007
[78] R. Stropnik, U. Stritih, Increasing the efficiency of PV panel with the use of PCM, Renewable Energy 97 (2016) 671-679. https://doi.org/10.1016/j.renene.2016.06.011
[79] Y. Zheng, B.M. Jenkins, K. Kornbluth, C. Træholt, Optimization under uncertainty of a biomass-integrated renewable energy microgrid with energy storage, Renewable Energy 123 (2018) 204-217. https://doi.org/10.1016/j.renene.2018.01.120
[80] R.D. Lopez, I.R.C. Monreal, J.M. Yusta, Stochastic-heuristic methodology for the optimisation of components and control variables of PV-wind-diesel-battery stand-alone systems, Renewable Energy 99 (2016) 919-935. https://doi.org/10.1016/j.renene.2016.07.069
[81] A.M. Motaleb, S.K. Bekdache, L.A. Barrios, Optimal sizing for a hybrid power system with wind/energy storage based in stochastic environment, Renewable and Sustainable Energy Reviews 59 (2016) 1149-1158. https://doi.org/10.1016/j.rser.2015.12.267
[82] H.H. Dezaki, M. Hamzeh, H.A. Abyaneh, H.H. Khiavi, Risk management of smart grids based on managed charging of PHEVs and vehicle-to-grid strategy using Monte Carlo simulation, Energy Conversion and Management 100 (2015) 262-276. https://doi.org/10.1016/j.enconman.2015.05.015
[83] R.D. López, E.P. Cebollada, J.L.B. Agustín, I.M. Ruiz, Optimisation of energy supply at off-grid healthcare facilities using Monte Carlo simulation, Energy Conversion and Management 113 (2016) 321-330. https://doi.org/10.1016/j.enconman.2016.01.057
[84] W.A. Adheem, A. Khafory, Maximum power point tracking control of PV electronic system using neural network, in International Conference for Engineering Researches, 2017.
[85] H.A. Aribisala, Improving the efficiency of solar photovoltaic power system, University of Rhode Island, 2013.
[86] R. Sharma, S. Suhag, Novel control strategy for hybrid renewable energy-based standalone system, Turkish Journal of Electrical Engineering & Computer Sciences 25 (2017) 2261-2277. https://doi.org/10.3906/elk-1604-102
[87] G. Ding, F. Gao, S. Zhang, P.C. Loh, F. Blaabjerg, Control of hybrid AC/DC microgrids under islanding operational conditions, J. Mod. Power Syst. Clean Energy 2 (2014) 223-232. https://doi.org/10.1007/s40565-014-0065-z
[88] W.R.A. Adhem, Designing and simulating of microcontroller based on PWM Solar Charge Controller, Journal of Al-Ma’moon College, no. 19-E, 2012.
[89] M.S.H. Lipu, M.A. Hannan, A. Hussain, M.M. Hoque, P.J. Ker, M.H.M. Saad, A. Ayob, A review of state of health and remaining useful life estimation methods for Lithium-ion battery in electric vehicles: Challenges and recommendations, J. Clean. Prod 205 (2018) 115-133. https://doi.org/10.1016/j.jclepro.2018.09.065
[90] M.A. Hannan, J.A. Ali, M.S.H. Lipu, A. Mohamed, P.J. Ker, T.M.I. Mahlia, M. Mansor, A. Hussain, K.M. Muttaqi, Z.Y. Dong, Role of optimization algorithms based fuzzy controller in achieving induction motor performance enhancement, Nat. Commun. 11 (2020) 3792. https://doi.org/10.1038/s41467-020-17623-5
[91] M.A. Hannan, Z.A. Ghani, M.M. Hoque, P.J. Ker, A. Hussain, A. Mohamed, Fuzzy logic inverter controller in photovoltaic applications: Issues and recommendations, IEEE Access 7 (2019) 24934-24955. https://doi.org/10.1109/ACCESS.2019.2899610
[92] M.K. Sahoo, P. Kale, Integration of silicon nanowires in solar cell structure for efficiency enhancement: A review, J. Materiomics 5 (2019) 34-48. https://doi.org/10.1016/j.jmat.2018.11.007
[93] S.S. Liao, Y.C. Lin, C.L. Chuang, E.Y. Chang, Efficiency enhancement of multicrystalline Silicon solar cells by inserting two-step growth thermal oxide to the surface passivation layer, International Journal of Photoenergy 2017 (2017) 9503857. https://doi.org/10.1155/2017/9503857
[94] X. Huang, S. Han, W. Huang, X. Liu, Enhancing solar cell efficiency: The search for luminescent materials as spectral converters, Chem. Soc. Rev. 42 (2013) 173-201. https://doi.org/10.1039/C2CS35288E
[95] H. Zhang, J. Toudert, Optical management for efficiency enhancement in hybrid organic-inorganic Lead halide perovskite solar cells, Sci. Technol. Adv. Mater. 19 (2018) 411-424. https://doi.org/10.1080/14686996.2018.1458578