Determination of the forming limit curve of locally annealed aluminum blanks

Determination of the forming limit curve of locally annealed aluminum blanks

PICCININNI Antonio, LATTANZI Attilio, ROSSI Marco, PALUMBO Gianfranco

download PDF

Abstract. The research of innovative manufacturing routes to improve the complexity of structural Aluminum (Al) components and reduce the vehicles’ weight remains an open question. The adoption of short-term heat treatments to obtain an optimized distribution of properties has shown great potential in enhancing the formability of Al alloys at room temperature. Such a complex approach needs the implementation of methodologies based on numerical simulations able to correctly simulate the forming process. Accordingly, the definition of a proper identification procedure to provide reliable constitutive parameters, possibly employing a limited number of tests, becomes crucial. In this work, we introduce a novel methodology for the evaluation of the Forming Limit Curve (FLC) of laser annealed AA5752-H32 sheet based on the material information from different heterogeneous tests carried out in specific tribological condition, i.e. in absence of friction. Therefore, we investigate an experimental procedure to simultaneously generate an equi-biaxial mechanical state over a wide range of annealing conditions by means of hydraulic bulge test. The results are integrated with full-field data from uniaxial tensile and plane strain tests to provide a testing protocol for the characterization of the failure behavior accounting for the different temperature/time conditions of the sheet metal.

Keywords
Laser Heat Treatment, Aluminum Alloy, FEM, FLC, Bulge Test

Published online 4/19/2023, 11 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: PICCININNI Antonio, LATTANZI Attilio, ROSSI Marco, PALUMBO Gianfranco, Determination of the forming limit curve of locally annealed aluminum blanks, Materials Research Proceedings, Vol. 28, pp 855-865, 2023

DOI: https://doi.org/10.21741/9781644902479-94

The article was published as article 94 of the book Material Forming

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] A. Taub, E. De Moor, A. Luo, D.K. Matlock, J.G. Speer, U. Vaidya, Materials for Automotive Lightweighting, Annu. Rev. Mater. Res. 49 (2019) 327–59. https://doi.org/10.1146/annurev-matsci-070218-010134
[2] DIN EN 45545-2. Railway applications – Fire protection on railway vehicles – Part 2: Requirements for fire behaviour of materials and components 2016.
[3] S.S. Hecker, Formability of Aluminum Alloy Sheets, J. Eng. Mater. Technol. 97 (1975) 66-73. https://doi.org/10.1115/1.3443263
[4] G. Palumbo, A. Piccininni, Numerical-experimental investigations on the manufacturing of an aluminium bipolar plate for proton exchange membrane fuel cells by warm hydroforming, Int. J. Adv. Manuf. Technol. 69 (2013) 731–742. https://doi.org/10.1007/s00170-013-5047-1
[5] A. Piccininni, A. Lo Franco, G. Palumbo, Warm Forming Process for an AA5754 Train Window Panel, J. Manuf. Sci. Eng. 144 (2022) 1–12. https://doi.org/10.1115/1.4052583
[6] M. Geiger, M. Merklein, U. Vogt, Aluminum tailored heat treated blanks, Prod. Eng. 3 (2009) 401-410. https://doi.org/10.1007/s11740-009-0179-8
[7] A. Piccininni, G. Palumbo, Design and optimization of the local laser treatment to improve the formability of age hardenable aluminium alloys, Materials 13 (2020). https://doi.org/10.3390/ma13071576
[8] M. Rossi, A. Lattanzi, A. Piccininni, P. Guglielmi, G. Palumbo, Study of Tailor Heat Treated Blanks Using the Fourier-series-based VFM, Procedia Manuf. 47 (2020) 904-909. https://doi.org/https://doi.org/10.1016/j.promfg.2020.04.278
[9] M.A. Sutton, J.J. Orteu, H.W. Schreier, Image Correlation for Shape, Motion and Deformation, Springer, 2009.
[10] F. Pierron, M. Grediac, The virtual fields method: Extracting constitutive mechanical parameters from full-field deformation measurements, Springer New York, NY, 2012. https://doi.org/10.1007/978-1-4614-1824-5
[11] S. Avril, M. Bonnet, A.S. Bretelle, M. Grédiac, F. Hild, P. Ienny, F. Latourte, D. Lemosse, S. Pagano, E. Pagnacco, F. Pierron, Overview of identification methods of mechanical parameters based on full-field measurements, Exp. Mech. 48 (2008) 381–402. https://doi.org/10.1007/s11340-008-9148-y
[12] D. Lecompte, S. Cooreman, S. Coppieters, J. Vantomme, H. Sol, D. Debruyne, Parameter identification for anisotropic plasticity model using digital image correlation, Eur. J. Comput. Mech. 18 (2009) 393–418. https://doi.org/10.3166/ejcm.18.393-418
[13] M. Grédiac, F. Pierron, Applying the Virtual Fields Method to the identification of elasto-plastic constitutive parameters, Int. J. Plast. 22 (2006) 602-627. https://doi.org/10.1016/j.ijplas.2005.04.007
[14] M. Rossi, A. Lattanzi, F. Barlat, A general linear method to evaluate the hardening behaviour of metals at large strain with full-field measurements, Strain 54 (2018) 12265. https://doi.org/https://doi.org/10.1111/str.12265
[15] M. Rossi, F. Pierron, M. Štamborská, Application of the virtual fields method to large strain anisotropic plasticity, Int. J. Solid. Struct. 97–98 (2016) 322-335. https://doi.org/https://doi.org/10.1016/j.ijsolstr.2016.07.015
[16] A. Lattanzi, F. Barlat, F. Pierron, A. Marek, M. Rossi, Inverse identification strategies for the characterization of transformation-based anisotropic plasticity models with the non-linear VFM, Int. J. Mech. Sci. 173 (2020) 105422. https://doi.org/https://doi.org/10.1016/j.ijmecsci.2020.105422
[17] J.M.P. Martins, S. Thuillier, A. Andrade-Campos, Calibration of a modified Johnson-Cook model using the Virtual Fields Method and a heterogeneous thermo-mechanical tensile test, Int. J. Mech. Sci. 202–203 (2021) 106511.https://doi.org/https://doi.org/10.1016/j.ijmecsci.2021.106511
[18] A. Lattanzi, A. Piccininni, P. Guglielmi, M. Rossi, G. Palumbo, A fast methodology for the accurate characterization and simulation of laser heat treated blanks, Int. J. Mech. Sci. 192 (2021) 106134. https://doi.org/10.1016/j.ijmecsci.2020.106134
[19] A. Piccininni, A. Lattanzi, M. Rossi, Investigation of the plane strain behaviour of a laser-heat treated aluminium alloy Key Engineering Material 926 (2022) 1030-1038. doi:10.4028/p-ic4qyv
[20] A. Piccininni, A. Lattanzi, M. Rossi, G. Palumbo, Investigation of The Anisotropic Behaviour of Laser Heat Treated Aluminium Blanks . Paper presented at ESAFORM 2021. 24th International Conference on Material Forming, Liège, Belgique. (2021) doi: 10.25518/esaform21.4086
[21] F. Grytten, B. Holmedal, O.S. Hopperstad, T. Børvik, Evaluation of identification methods for YLD2004-18p, Int. J. Plast. 24 (2008) 2248-2277. https://doi.org/10.1016/j.ijplas.2007.11.005.
[22] M. Rossi, A. Lattanzi, L. Cortese, D. Amodio, An approximated computational method for fast stress reconstruction in large strain plasticity, Int. J. Numer. Meth. Eng. 121 (2020) 3048-3065. https://doi.org/10.1002/nme.6346
[23] M. Rossi, A. Lattanzi, L. Morichelli, J.M. Martins, S. Thuillier, A. Andrade‐Campos, S. Coppieters, Testing methodologies for the calibration of advanced plasticity models for sheet metals: A review, Strain 58 (2022) e12426. https://doi.org/10.1111/str.12426
[24] M. Rossi, A. Lattanzi, F. Barlat, J.H. Kim, Inverse identification of large strain plasticity using the hydraulic bulge-test and full-field measurements, Int. J. Solid. Struct. 242 (2022) 111532. https://doi.org/10.1016/j.ijsolstr.2022.111532
[25] M.G. Oliveira, S. Thuillier, A. Andrade-Campos, Evaluation of heterogeneous mechanical tests for model calibration of sheet metals, J. Strain Anal. Eng. 57 (2021) 208-224. https://doi.org/10.1177/03093247211027061