Multi-scale modeling of the effect of crystallographic texture
REVIL-BAUDARD Benoit, CAZACU Oana
download PDFAbstract. Among processes involving plastic deformation, sheet metal forming requires a most accurate description of plastic anisotropy. One of the main sources of mechanical anisotropy is crystallographic texture, which induces directionality in the macroscopic plastic properties of the polycrystalline metallic alloy sheets (e.g. anisotropy in yield stresses, Lankford coefficients). Recently, we develop a single-crystal yield criterion that satisfies the intrinsic symmetries of the constituent crystals and the condition of insensitivity to hydrostatic pressure [1]. Moreover, this single-crystal criterion is defined for any 3-D stress state. It was shown that the use of this single-crystal criterion for the description of the plastic behavior of the constituent crystals in conjunction with appropriate homogenization procedures leads to an improved prediction of the plastic anisotropy in macroscopic properties under uniaxial loading for polycrystalline aluminum alloys. In this paper, using this polycrystalline model, we simulate the deformation response of sheets of various crystallographic textures. Examples demonstrate the predictive capabilities of the model to describe the influence of the crystallographic texture on the macroscopic behavior and on the final shape of parts obtained using deep-drawing.
Keywords
Crystallographic Texture, Polycrystalline Model, Macroscopic Plasticity, Metal Forming
Published online 4/19/2023, 8 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: REVIL-BAUDARD Benoit, CAZACU Oana, Multi-scale modeling of the effect of crystallographic texture, Materials Research Proceedings, Vol. 28, pp 799-806, 2023
DOI: https://doi.org/10.21741/9781644902479-87
The article was published as article 87 of the book Material Forming
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] O. Cazacu, B. Revil-Baudard, N. Chandola, A yield criterion for cubic single crystals, Int. J. Solid. Struct. 151 (2018) 9-19. https://doi.org/10.1016/j.ijsolstr.2017.04.006
[2] O. Cazacu, B. Revil-Baudard, Plasticity of Metallic Materials: Modeling and Applications to Forming, Elsevier, 2020.
[3] O. Cazacu, B. Revil-Baudard, N. Chandola, Plasticity-Damage Couplings: From Single Crystal to Polycrystalline Materials, Springer, 2019.
[4] N. Chandola, O. Cazacu, B. Revil-Baudard, Prediction of plastic anisotropy of textured polycrystalline sheets using a new single-crystal model, Comptes Rendus Mécanique 346 (2018) 756-769.
[5] E. Schmid, W. Boas, Plasticity of Crystals (Translation by F.A. Hughes & Co. Limited), Chapman & Hall Ltd, London, 1951.
[6] C.F. Elam, Distortion of metal crystals, Clarendon Press, 1935.
[7] B. Revil-Baudard, O. Cazacu, N. Chandola, Finite Element Analysis of AA 6016-T4 Sheet Metal Forming Operations Using a New Polycrystalline Model, Key Eng. Mater. 926 (2022) 1067–1074. https://doi.org/10.4028/p-3b1ez2
[8] A.M. Habraken, T.A. Aksen, J.L. Alves, R.L. Amaral, E. Betaieb, N. Chandola, L. Corallo, D.J. Cruz, L. Duchêne, Bernd Engel, E. Esener, M. Firat, P.Frohn-Sörensen, J. Galán-López, H. Ghiabakloo, L.A.I. Kestens, J. Lian, R. Lingam, W. Liu, J. Ma, L.F. Menezes, T. Nguyen-Minh, S.S. Miranda, D.M. Neto, A.F.G. Pereira, P.A. Prates, J. Reuter, B. Revil-Baudard, C. Rojas-Ulloa, B. Sener, F. Shen, A. Van Bael, P. Verleysen, F. Barlat, O. Cazacu, T. Kuwabara, A. Lopes, M.C. Oliveira, A.D. Santos, G. Vincze, Analysis of ESAFORM 2021 cup drawing benchmark of an Al alloy, critical factors for accuracy and efficiency of FE simulations, Int. J. Mater. Form. 15 (2022) 1–96. https://doi.org/10.1007/s12289-022-01672-w
[9] J. Hirsch, Texture and anisotropy in industrial applications of aluminium alloys, Arch. Metall. Mater. 50 (2005) 21-34.
[10] J. Hirsch, Texture evolution and earing in aluminium can sheet, Mater. Sci. Forum 495 (2005) 1565-1572. https://doi.org/10.4028/www.scientific.net/MSF.495-497.1565
[11] F. Bachmann, R. Hielscher, H. Schaeben, Texture analysis with MTEX–free and open source software toolbox, Solid state phen. 160 (2010) 63-68. https://doi.org/10.4028/www.scientific.net/SSP.160.63
[12] O. Cazacu, New yield criteria for isotropic and textured metallic materials, Int. J. Solid. Struct. 139–140 (2018) 200-210. https://doi.org/10.1016/j.ijsolstr.2018.01.036