Damage prediction in roll forming of the high strength aluminum alloy AA7075
SUCKOW Timon, GROCHE Peter
download PDFAbstract. The high-strength AA7075 alloy offers great potential for lightweight construction thanks to its high specific strength. However, high strength and low ductility are challenging for forming the material in the peak-aged T6-condition in terms of material failure and springback. Therefore, this alloy is usually formed in temperature-supported process routes, which poses major challenges for process design. For cold forming of the alloy in the T6-condition, a reliable prediction of material failure is required in terms of process design. Within this study, this is achieved by applying the modified Mohr-Coulomb (MMC) criterion and an increment based damage evolution rule to the FE-model. To validate the failure prediction and verify the general applicability to different profile geometries, two U-profiles and a V-profile are roll formed. Failure occurs during forming for all profile geometries and the experimental results show a good agreement with the failure prediction. The quality of the damage prediction strongly depends on the calibration for the MMC criterion and the setup of the FE-model, depending on the mesh size and the element type used.
Keywords
Roll Forming, Aluminum, 7075, Material Failure, Damage, FEM
Published online 4/19/2023, 12 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: SUCKOW Timon, GROCHE Peter, Damage prediction in roll forming of the high strength aluminum alloy AA7075, Materials Research Proceedings, Vol. 28, pp 787-798, 2023
DOI: https://doi.org/10.21741/9781644902479-86
The article was published as article 86 of the book Material Forming
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] T. Suckow, P. Groche, Evaluation of Cold Roll Forming Strategies for the Production of a High-Strength Aluminum Hat Profile, Key Eng. Mater. 926 (2022) 690-699. https://doi.org/10.4028/p-y5090o
[2] S. Lee, J. Lee, J. Song, J. Park, S. Choi, W. Noh, G. Kim, Fracture simulation of cold roll forming process for aluminum 7075-T6 automotive bumper beam using GISSMO damage model, Procedia Manuf. 15 (2018) 751-758. https://doi.org/10.1016/j.promfg.2018.07.314
[3] T. Suckow, J. Schroeder, P. Groche, Roll forming of a high strength AA7075 aluminum tube, Product. Eng. 15 (2021) 573-586. https://doi.org/10.1007/s11740-021-01046-2
[4] K. Sweeney, U. Grunewald, The application of roll forming for automotive structural parts, J. Mater. Process. Technol. 132 (2003) 9-15. https://doi.org/10.1016/S0924-0136(02)00193-0
[5] O. Röcker, Untersuchungen zur Anwendung hoch- und höchstfester Stähle für walzprofilierte Fahrzeugstrukturkomponenten, PhD Thesis, Technische Universität Berlin, 2008.
[6] K. Mäntyjärvi, M. Merklein, J. Karjaleinen, UHS Steel Formability in Flexible Roll Forming, Key Eng. Mater. 410 (2009) 661-668. https://doi.org/10.4028/www.scientific.net/KEM.410-411.661
[7] O.M. Badr, B. Rolfe, P.D. Hodgson, M. Weiss, Forming of high strength titanium sheet at room temperature, Mater. Des. 66 (2015) 618-626. https://doi.org/10.1016/j.matdes.2014.03.008
[8] A.D. Deole, M.R. Barnett, M. Weiss, The numerical prediction of ductile fracture of martensitic steel in roll forming, Int. J. Solid. Struct. 144-145 (2018) 20-31. https://doi.org/10.1016/j.ijsolstr.2018.04.011
[9] H. Talebi-Ghadikolaee, H.M. Naeini, M.J. Mirnia, M.A. Mirnia, M.A. Mirzai, S. Alexandrov, M.S. Zeinali, Modeling of ductile damage evolution in roll forming of U-channel sections, J. Mater. Process. Technol. 283 (2020) 116690. https://doi.org/10.1016/j.jmatprotec.2020.116690
[10] T.S. Cao, Models for ductile damage and fracture prediction in cold bulk metal forming processes: a review, Int. J. Mater. Form. 10 (2017) 139-171. https://doi.org/10.1007/s12289-015-1262-7
[11] A.E. Tekkaya, O.-O. Bouchard, S. Bruschi, C.C. Tasan, Damage in metal forming, CIRP Annals. 69 (2020) 600-623. https://doi.org/10.1016/j.cirp.2020.05.005
[12] Y. Lou, S. Lim, K. Pack, New ductile fracture criterion for prediction of fracture forming limit diagrams of sheet metals, Int. J. Solid. Struct. 49 (2012) 3605-3615. https://doi.org/10.1016/j.ijsolstr.2012.02.016
[13] Y. Bai, T. Wierzbicki, A new model of metal plasticity and fracture with pressure and Lode dependence, Int. J. Plast. 24 (2008) 1071-1096. https://doi.org/10.1016/j.ijplas.2007.09.004
[14] Y. Bai, T. Wierzbicki, Application of extended Mohr-Coulomb criterion to ductile fracture, Int. J. Fract. 161 (2010) 1-20. https://doi.org/10.1007/s10704-009-9422-8
[15] H. Wang, Y. Yan, F. Jia, F. Han, Investigations of fracture on DP980 steel sheet in roll forming process, J. Manuf. Process. 22 (2016) 177-184. https://doi.org/10.1016/j.jmapro.2016.03.008
[16] Y. Lou, H. Huh, Prediction of ductile fracture for advanced high strength steel with a new criterion: Experiments and simulation, J. Mater. Process. Technol. 213 (2013) 1284-1302. https://doi.org/10.1016/j.jmatprotec.2013.03.001