Experimental analysis of cold sprayed precursors for closed-cells aluminum foams

Experimental analysis of cold sprayed precursors for closed-cells aluminum foams

VISCUSI Antonio, PERNA Alessia Serena, ASTARITA Antonello, BORRELLI Domenico, CARAVIELLO Antonio, SICIGNANO Nicola, CARRINO Luigi

download PDF

Abstract. Metal foams are a relatively new class of materials with many interesting combinations of physical and mechanical properties. Among them, the closed-cells aluminum foams are the most interesting for structural applications in the aerospace industry. There exist different methods to produce metal foams. An innovative manufacturing technique was developed in this study, proving the possibility to produce closed-cells aluminum foams through the cold spray additive manufacturing technology (CS). In particular, two different sets of samples were produced by varying the cold spray process parameters aiming at: i) studying the advantages and the issues of cold spray for manufacturing precursors for metal foams; ii) analyzing the correlation among the CS printing strategy and parameters, the foaming process and the physical and the morphological characteristics of the resulting foams; iii) finally, finding appropriate conditions to form closed-cells aluminum foams via CS.

Keywords
Cold Spray, Metal Foams, Precursors, 3D-Printing, Experimental Analysis

Published online 4/19/2023, 8 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: VISCUSI Antonio, PERNA Alessia Serena, ASTARITA Antonello, BORRELLI Domenico, CARAVIELLO Antonio, SICIGNANO Nicola, CARRINO Luigi, Experimental analysis of cold sprayed precursors for closed-cells aluminum foams, Materials Research Proceedings, Vol. 28, pp 49-56, 2023

DOI: https://doi.org/10.21741/9781644902479-6

The article was published as article 6 of the book Material Forming

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] G. Sun, D. Chen, G. Zhu, Q. Li, Lightweight hybrid materials and structures for energy absorption: A state-of-the-art review and outlook, Thin-Walled Struct. 172 (2022) 108760. https://doi.org/10.1016/j.tws.2021.108760
[2] J. Banhart, Metal Foams: Production and Stability, Adv. Eng. Mater. 8 (2006) 781-794. https://doi.org/10.1002/adem.200600071
[3] J. Banhart, Manufacture, characterisation and application of cellular metals and metal foams, Prog. Mater. Sci. 46 (2001) 559–632. https://doi.org/10.1016/S0079-6425(00)00002-5
[4] L. Peroni, M. Avalle, M. Peroni, The mechanical behaviour of aluminium foam structures in different loading conditions, Int. J. Impact Eng. 35 (2008) 644-658. https://doi.org/10.1016/j.ijimpeng.2007.02.007
[5] J. Baumeister, J. Banhart, M. Weber, Aluminium foams for transport industry, Mater. Des. 18 (1997) 217-220. https://doi.org/10.1016/S0261-3069(97)00050-2
[6] J. Kahani Khabushan, S. Bazzaz Bonabi, F. Moghaddasi Aghbagh, A. Kahani Khabushan, A study of fabricating and compressive properties of cellular Al–Si (355.0) foam using TiH2, Mater. Des. 55 (2014) 792–797. https://doi.org/10.1016/j.matdes.2013.10.022
[7] J. Banhart, Aluminium foams for lighter vehicles, Int. J. Veh. Des. 37 (2005) 114-125. https://doi.org/10.1504/IJVD.2005.006640
[8] A. Viscusi, M. Durante, A. Formisano, An Experimental–Numerical Analysis of Innovative Aluminum Foam-Based Sandwich Constructions Under Compression Loads, Lect. Notes Mech. Eng. (2022) 131-150. https://doi.org/10.1007/978-3-030-82627-7_8
[9] A. Formisano, M. Durante, A. Viscusi, L. Carrino, Mechanical behavior and collapse mechanisms of innovative aluminum foam-based sandwich panels under three-point bending, Int. J. Adv. Manuf. Technol. 112 (2021) 1631-1639. https://doi.org/10.1007/S00170-020-06564-4/FIGURES/8
[10] C. Ensarioglu, A. Bakirci, H. Koluk, M. Cemal Cakir, C. Ensarioglu, A. Bakirci, M.C. Cakir, H. Koluk, Metal Foams and Their Applications in Aerospace Components, Sustainable Aviation. Springer, Cham. (2022) 27-63. https://doi.org/10.1007/978-3-030-91873-6_2
[11] A.S. Perna, A. Viscusi, R.D. Gatta, A. Astarita, Cold spraying on polymer-based composites: Understanding the single-particle adhesion, Surf. Coatings Technol. 447 (2022) 128837. https://doi.org/10.1016/j.surfcoat.2022.128837
[12] A.S. Perna, A. Viscusi, R.D. Gatta, A. Astarita, Integrating 3D printing of polymer matrix composites and metal additive layer manufacturing: surface metallization of 3D printed composite panels through cold spray deposition of aluminium particles, Int. J. Mater. Form. 15 (2022). https://doi.org/10.1007/s12289-022-01665-9
[13] A. Viscusi, R. Della Gatta, F. Delloro, I. Papa, A.S. Perna, A. Astarita, A novel manufacturing route for integrated 3D-printed composites and cold-sprayed metallic layer, Mater. Manuf. Process. 37 (2022) 568-581. https://doi.org/10.1080/10426914.2021.1942908.
[14] P. Ammendola, R. Chirone, F. Raganati, Fluidization of binary mixtures of nanoparticles under the effect of acoustic fields, Adv. Powder Technol. 22 (2011) 174-183. https://doi.org/10.1016/J.APT.2010.10.002
[15] A. Viscusi, M. Bruno, L. Esposito, G. Testa, An experimental/numerical study of bonding mechanism in cold spray technology for metals, Int. J. Adv. Manuf. Technol. 110 (2020) 2787-2800. https://doi.org/10.1007/s00170-020-06060-9
[16] A.S. Perna, A. Viscusi, A. Astarita, L. Boccarusso, L. Carrino, M. Durante, R. Sansone, Manufacturing of a Metal Matrix Composite Coating on a Polymer Matrix Composite Through Cold Gas Dynamic Spray Technique, J. Mater. Eng. Perform. (2019). https://doi.org/10.1007/s11665-019-03914-6
[17] A.S. Perna, A. Viscusi, A. Astarita, L. Boccarusso, L. Carrino, M. Durante, R. Sansone, Manufacturing of a Metal Matrix Composite Coating on a Polymer Matrix Composite Through Cold Gas Dynamic Spray Technique, J. Mater. Eng. Perform. 28 (2019) 3211-3219. https://doi.org/10.1007/s11665-019-03914-6