Investigation of the compaction behavior of uni- and bidirectional non-crimp fabrics
SCHÄFER Bastian, ZHENG Ruochen, BOISSE Philippe, KÄRGER Luise
download PDFAbstract. The through-thickness compaction behavior of engineering textiles significantly influences the resulting component properties during liquid composite molding processes (LCM). It determines the final fiber volume content and thus the necessary press force, the permeability as well as the final mechanical properties. In the present work, the behavior of a uni- and bidirectional carbon fiber non-crimp fabric (UD- & Biax-NCF) with the same fiber type and areal density of fibers in the respective main reinforcement directions is tested in a punch-to-plate setup. Thereby, the influence of the relative fiber orientation at the interfaces of a layup as well as the number of plies is investigated. A combined influence of roving nesting and superposition of stitching patterns is observed. This results in a common influence of decreasing resistance to compaction for higher numbers of layers, while the relative orientation of the interfaces in a layup is only significant for the Biax-NCF.
Keywords
Fabrics/Textiles, Experimental Characterization, UD-NCF, Biax-NCF
Published online 4/19/2023, 8 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: SCHÄFER Bastian, ZHENG Ruochen, BOISSE Philippe, KÄRGER Luise, Investigation of the compaction behavior of uni- and bidirectional non-crimp fabrics, Materials Research Proceedings, Vol. 28, pp 331-338, 2023
DOI: https://doi.org/10.21741/9781644902479-36
The article was published as article 36 of the book Material Forming
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] C.T. Poppe, C. Krauß, F. Albrecht, L. Kärger, A 3D process simulation model for wet compression moulding, Compos. Part A: Appl. Sci. Manuf. 50 (2021) 106379. https://doi.org/10.1016/j.compositesa.2021.106379
[2] F. Robitaille, R. Gauvin, Compaction of textile reinforcements for composites manufacturing. I: Review of experimental results, Polym. Compos. 19 (1998) 198-216. https://doi.org/10.1002/pc.10091
[3] B. Chen, E.J. Lang, T.-W. Chou, Experimental and theoretical studies of fabric compaction behavior in resin transfer molding, Mater. Sci. Eng. A317 (2001) 188-196. https://doi.org/10.1016/S0921-5093(01)01175-3
[4] S.V. Lomov, M. Barburski, T. Stoilova, I. Verpoest, R. Akkerman, R. Loendersloot, Ten Thije, R. H. W., Carbon composites based on multiaxial multiply stitched preforms. Part 3: Biaxial tension, picture frame and compression tests of the preforms, Compos. Part A: Appl. Sci. Manuf. 36 (2005) 1188-1206. https://doi.org/10.1016/j.compositesa.2005.01.015
[5] J. Yang, J. Xiao, J. Zeng, D. Jiang, C. Peng, Compaction Behavior and Part Thickness Variation in Vacuum Infusion Molding Process, Appl. Compos. Mater. 19 (2012) 443-458. https://doi.org/10.1007/s10443-011-9217-8
[6] L. Li, Y. Zhao, J. Yang, J. Zhang, Y. Duan, An experimental investigation of compaction behavior of carbon non-crimp fabrics for liquid composite molding, J. Mater. Sci. 50 (2015) 2960-2972. https://doi.org/10.1007/s10853-015-8860-0
[7] T. Grieser, P. Mitschang, Investigation of the compaction behavior of carbon fiber NCF for continuous preforming processes, Polym. Compos. 38 (2017) 2609-2625. https://doi.org/10.1002/pc.23854
[8] A.X.H. Yong, A. Aktas, D. May, A. Endruweit, S.V. Lomov, S. Advani, P. Hubert, S.G. Abaimov, D. Abliz, I. Akhatov, M.A. Ali, S. Allaoui, T. Allen, D.C. Berg, S. Bickerton, B. Caglar, P. Causse, A. Chiminelli, S. Comas-Cardona, M. Danzi, J. Dittmann, C. Dransfeld, P. Ermanni, E. Fauster, A. George, J. Gillibert, Q. Govignon, R. Graupner, V. Grishaev, A. Guilloux, M.A. Kabachi, A. Keller, K. Kind, D. Large, M. Laspalas, O.V. Lebedev, M. Lizaranzu, A.C. Long, C. López, K. Masania, V. Michaud, P. Middendorf, P. Mitschang, S. van Oosterom, R. Schubnel, N. Sharp, P. Sousa, F. Trochu, R. Umer, J. Valette, J.H. Wang, Experimental characterisation of textile compaction response: A benchmark exercise, Compos. Part A: Appl. Sci. Manuf. 142 (2020) 106243. https://doi.org/10.1016/j.compositesa.2020.106243
[9] A. Hammami, B.R. Gebart, Analysis of the vacuum infusion molding process, Polym. Compos. 21 (2000) 28-40. https://doi.org/10.1002/pc.10162
[10] S. Korkiakoski, M. Haavisto, M. Rostami Barouei, O. Saarela, Experimental compaction characterization of unidirectional stitched non-crimp fabrics in the vacuum infusion process, Polym. Compos. 37 (2016) 2692-2704. https://doi.org/10.1002/pc.23464
[11] D. Droste, L. Krishnappa, S. Bornemann, J.-H. Ohlendorf, M.G. Vargas Gleason, A.S. Herrmann, W. Lang, Investigation of the compaction behaviour of a quasi-unidirectional non-crimp fabric during the vacuum infusion process, J. Compos. Mater. 56 (2022) 2509-2524. https://doi.org/10.1177/00219983221092011
[12] P. Boisse, R. Akkerman, P. Carlone, L. Kärger, S.V. Lomov, J.A. Sherwood, Advances in composite forming through 25 years of ESAFORM, Int. J. Mater. Form. 15 (2022) 99. https://doi.org/10.1007/s12289-022-01682-8
[13] J. Yang, J. Xiao, J. Zeng, D. Jiang, C. Peng, Compaction Behavior and Part Thickness Variation in Vacuum Infusion Molding Process, Appl. Compos. Mater. 19 (2012) 443-458. https://doi.org/10.1007/s10443-011-9217-8
[14] S.V. Lomov, I. Verpoest, T. Peeters, D. Roose, M. Zako, Nesting in textile laminates: geometrical modelling of the laminate, Compos. Sci. Technol. 63 (2003) 993-1007. https://doi.org/10.1016/S0266-3538(02)00318-4
[15] P. Sousa, S.V. Lomov, J. Ivens, Methodology of dry and wet compressibility measurement, Compos. Part A: Appl. Sci. Manuf. 128 (2020) 105672. https://doi.org/10.1016/j.compositesa.2019.105672
[16] F. Behnisch, V. Lichtner, F. Henning, P. Rosenberg, Development of a Reactive Polyurethane Foam System for the Direct Sandwich Composite Molding (D-SCM) Process, J. Compos. Sci. 5 (2021) 104. https://doi.org/10.3390/jcs5040104