A unit-cell mesoscale modelling of biaxial non-crimp-fabric based on a hyperelastic approach
ZHENG Ruochen, SCHÄFER Bastian, PLATZER Auriane, COLMARS Julien, NAOUAR Naim, BOISSE Philippe
download PDFAbstract. Understanding the mechanical properties of carbon fiber reinforcements is necessary for the simulation of forming processes. A unit-cell mesoscopic model provides a tool to implement virtual material characterizations which can be served as an input for macroscopic modelling, avoiding complex experimental tests and significantly reducing calculation time. Meanwhile, the occurrence of some local defects during the forming process, such as the gapping, would be easier to be detected through a mesoscopic approach. In this research, a novel mesoscale model for biaxial non-crimp fabric is developed based on the geometry measured from the results of X-ray tomography. A hyperelastic constitutive law is applied to the fiber yarns which are considered as a continuous medium. One type of unit-cell model is chosen and validated through a comparison with experimental tests and its in-plane shear behavior is studied.
Keywords
Biaxial NCF, Hyperelastic, Meso-Scale Model, Unit Cell
Published online 4/19/2023, 8 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: ZHENG Ruochen, SCHÄFER Bastian, PLATZER Auriane, COLMARS Julien, NAOUAR Naim, BOISSE Philippe, A unit-cell mesoscale modelling of biaxial non-crimp-fabric based on a hyperelastic approach, Materials Research Proceedings, Vol. 28, pp 285-292, 2023
DOI: https://doi.org/10.21741/9781644902479-31
The article was published as article 31 of the book Material Forming
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] P. Middendorf, C. Metzner, Aerospace applications of non-crimp fabric composites, in: Stepan V. Lomov (Eds.), Non-Crimp Fabric Composites, Woodhead Publishing (2011) 441-449. https://doi.org/10.1533/9780857092533.4.441
[2] A. Schnabel, T. Gries, Production of non-crimp fabrics for composites, in: Stepan V. Lomov (Eds.), Non-Crimp Fabric Composites, Woodhead Publishing (2011) 3-41. https://doi.org/10.1533/9780857092533.1.3
[3] S. Bel, P. Boisse, F. Dumont, Analyses of the Deformation Mechanisms of Non-Crimp Fabric Composite Reinforcements during Preforming, Appl. Compos. Mater. 19 (2012) 513-528. https://doi.org/10.1007/s10443-011-9207-x
[4] H. Krieger, T. Gries, S. E. Stapleton, Shear and drape behavior of non-crimp fabrics based on stitching geometry, Int. J. Mater. Form. 11 (2018) 593-605. https://doi.org/10.1007/s12289-017-1368-1
[5] H. Yin, Q. Li, L. Iannucci, Meso-scale Finite Element (FE) modelling of biaxial carbon fibre non-crimp-fabric (NCF) based composites under uniaxial tension and in-plane shear, Compos. Struct. 290 (2022) 115538. https://doi.org/10.1016/j.compstruct.2022.115538
[6] W. Wu, W. Li, Parametric modeling based on the real geometry of glass fiber unidirectional non-crimp fabric, Text. Res. J. 89 (2019) 3949-3959. https://doi.org/10.1177/0040517518824846
[7] J. Schirmaier, D. Dörr, F. Henning, and L. Kärger, A macroscopic approach to simulate the forming behaviour of stitched unidirectional non-crimp fabrics (UD-NCF), Compos. Part A 102 (2017) 322-335. https://dx.doi.org/10.1016/j.compositesa.2017.08.009
[8] B. Chen, J. Colmars, N. Naouar, N, P. Boisse, P, A hypoelastic stress resultant shell approach for simulations of textile composite reinforcement forming. Compos. Part A Appl. Sci. Manuf. 149 (2021) 106558. https://doi.org/10.1016/J.COMPOSITESA.2021.106558
[9] L. Kärger, S. Galkin, E. Kunze, M. Gude, B. Schäfer, Prediction of forming effects in UD-NCF by macroscopic forming simulation – Capabilities and limitations. Paper presented at ESAFORM 2021, 24th International Conference on Material Forming, Liège, Belgique. https://doi.org/10.25518/esaform21.355
[10] P. Boisse, N. Hamila, E. Vidal-Sallé, F. Dumont, Simulation of wrinkling during textile composite reinforcement forming. Influence of tensile, in-plane shear and bending stiffnesses, Compos. Sci. Technol. 71 (2011) 683-692. https://doi.org/10.1016/j.compscitech.2011.01.011
[11] S. Galkin, E. Kunze, L. Kärger, R. Böhm, M. Gude, Experimental and Numerical Determination of the Local Fiber Volume Content of Unidirectional Non-Crimp Fabrics with Forming Effects, J. Compos. Sci. 3 (2019) 19. https://doi.org/10.3390/jcs3010019
[12] G. Creech, A. K. Pickett, Meso-modelling of Non-Crimp Fabric composites for coupled drape and failure analysis. J. Mater. Sci. 41 (2006) 6725-6736. https://doi.org/ 10.1007/s10853-006-0213-6
[13] L. Li, Y. Zhao, H. Vuong, Y. Chen, J. Yang, Y. Duan, In-plane shear investigation of biaxial carbon non-crimp fabrics with experimental tests and finite element modeling, Mater. Des. 63 (2014) 757-765. https://doi.org/10.1016/j.matdes.2014.07.007
[14] S.V. Lomov, G. Huysmans, Y. Luo, R.S. Parnas, A. Prodromou, I. Verpoest, F.R. Phelan, Textile composites: modelling strategies, Compos. Part A 32 (2001) 1379-1394. https://doi.org/10.1016/S1359-835X(01)00038-0
[15] J. Whitcomb, X. Tang, Effective Moduli of Woven Composites, J. Compos. Mater. 35 (2001) 2127-2144. https://doi.org/10.1177/002199801772661380
[16] D. Goyal, X. Tang, J. Whitcomb, A. D. Kelkar, Effect of various parameters on effective engineering properties of 2 × 2 braided composites. Mech. Compos. Mater. Struct. 12 (2005) 113-128. https://doi.org/10.1080/15376490490493998
[17] S.V. Lomov, E.B. Belov, T. Bischoff, S.B. Ghosh, T. Truong Chi, I. Verpoest, Carbon composites based on multiaxial multiply stitched preforms. Part 1. Geometry of the preform, Compos. Part A 33 (2002) 1171-1183. https://doi.org/10.1016/S1359-835X(02)00090-8
[18] M. Q. Pham, E. Wendt, E. Häntzsche, T. Gereke, C. Cherif, Numerical modeling of the mechanical behavior of textile structures on the meso-scale for forming process simulations of composite 3D preforms, Engin. Reports 4 (2022) 12348. https://doi.org/10.1002/eng2.12348
[19] C. Miehe, J. Dettmar, A framework for micro-macro transitions in periodic particle aggregates of granular materials, Comput. Methods Appl. Mech. Engin. 193 (2004) 225-256. https://doi.org/10.1016/j.cma.2003.10.004
[20] P. Badel, E. Vidal-Sallé, E. Maire, P. Boisse, Simulation and tomography analysis of textile composite reinforcement deformation at the mesoscopic scale, Compos. Sci. Technol. 68 (2008) 2433-2440. https://doi.org/10.1016/j.compscitech.2008.04.038
[21] P. Badel, E. Vidal-Sallé, P. Boisse, Computational determination of in-plane shear mechanical behaviour of textile composite reinforcements, Computat. Mater. Sci. 40 (2007) 439-448. https://doi.org/10.1016/j.commatsci.2007.01.022
[22] A. Charmetant, E. Vidal-Sallé, P. Boisse, Hyperelastic modelling for mesoscopic analyses of composite reinforcements, Compos. Sci. Technol. 71 (2011) 1623-1631. https://doi.org/10.1016/j.compscitech.2011.07.004
[23] J. Cao, R. Akkerman, P. Boisse, J. Chen, H.S. Cheng, E.F. de Graaf, J.L. Gorczyca, P. Harrison, G. Hivet, J. Launay, W. Lee, L. Liu, S.V. Lomov, A. Long, E. de Luycker, F. Morestin, J. Padvoiskis, X.Q. Peng, J. Sherwood, Tz. Stoilova, X.M. Tao, I. Verpoest, A. Willems, J. Wiggers, T.X. Yu, B. Zhu, Characterization of mechanical behavior of woven fabrics: Experimental methods and benchmark results, Compos. Part A Appl. Sci. Manuf. 39 (2008) 1037-1053. https://doi.org/10.1016/j.compositesa.2008.02.016
[24] Q. Steer, J. Colmars, P. Boisse, Modeling of tricot stitch non crimp fabric in forming simulations, AIP Conference Proceedings 2113 (2019) 020004.https://doi.org/10.1063/1.5112509
[25] A. Iwata, T. Inoue, N. Naouar, P. Boisse, S. V. Lomov, Coupled meso-macro simulation of woven fabric local deformation during draping, Compos. Part A 118 (2019) 267-280. https://doi.org/10.1016/j.compositesa.2019.01.004
[26] A. Habboush, N. Sanbhal, H. Shao, J. Jiang, N. Chen, Characterization and Analysis of In-Plane Shear Behavior of Glass Warp-Knitted Non-Crimp Fabrics Based on Picture Frame Method, Materials 11 (2018) 1550. https://doi.org/10.3390/ma11091550