Monitoring of fluctuating material properties for optimizing sheet-metal forming processes: a systematic literature review

Monitoring of fluctuating material properties for optimizing sheet-metal forming processes: a systematic literature review

ORTJOHANN Lucia, BECKER Marco, NIEMIETZ Philipp, BERGS Thomas

download PDF

Abstract. Material properties can vary both along a sheet-metal coil and from coil to coil despite tight tolerances influencing the process stability of sheet-metal processes and the part quality, which leads to rejects and machine downtime [1]. This significantly affect the economic efficiency of the process. Monitoring fluctuations in material characteristics at regular intervals along sheet-metal coils is enabled directly by non-destructive testing (NDT) before the process offering conclusions on the material properties. Another material monitoring technique arises from monitoring process conditions of the upstream processes, e.g., cold rolling, leading indirectly to insights on material properties. In this work, a systematic literature review (SLR) [2] is conducted to investigate recent approaches for material monitoring and for the utilization of resulting material data for optimizing different sheet-metal forming processes. Existing approaches for different sheet-metal forming processes are critically appraised. Based on the SLR research gaps are revealed and research opportunities, e.g., arising from a potential transfer of existing solutions between different forming processes and recent advances in data-driven methods, are identified.

Keywords
Sheet-Metal Forming, Material Properties, Property Monitoring, NDT

Published online 4/19/2023, 10 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: ORTJOHANN Lucia, BECKER Marco, NIEMIETZ Philipp, BERGS Thomas, Monitoring of fluctuating material properties for optimizing sheet-metal forming processes: a systematic literature review, Materials Research Proceedings, Vol. 28, pp 2071-2080, 2023

DOI: https://doi.org/10.21741/9781644902479-222

The article was published as article 222 of the book Material Forming

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] V. Sturm, Einfluss von Chargenschwankungen auf die Verarbeitungsgrenzen von Stahlwerkstoffen, Zugl.: Erlangen-Nürnberg, Univ., Techn. Fak., Meisenbach, Bamberg, 2013.
[2] Y. Xiao, M. Watson, Guidance on Conducting a Systematic Literature Review, J. Plann. Edu. Res. 39 (2019) 93-112. https://doi.org/10.1177/0739456X17723971
[3] D. Harsch, P. Fischer, B. Berisha, J Heingärtner, Y. Renkci, P. Hora, Considering fluctuations of material properties, stainless steel 1.4301, on manufacturability of kitchen sinks, IOP Conf. Ser.: Mater. Sci. Eng. 418 (2018) 12113. https://doi.org/10.1088/1757-899X/418/1/012113
[4] A. Kolhatkar, A. Pandey, Sheet Metal Tooling: Selective Review of Online Monitoring Trends, Int. J. Mech. Prod. Eng. Res. Develop. (IJMPERD) 9 (2019) 183-198.
[5] J. Pennekamp, R. Glebke, M. Henze, T. Meisen, C. Quix, R. Hai, L. Gleim, P. Niemietz, M. Rudack, S. Knape, Towards an Infrastructure Enabling the Internet of Production, 2019 IEEE International Conference on Industrial Cyber Physical Systems (ICPS), IEEE. (2019) pp. 31-37. https://doi.org/10.1109/ICPHYS.2019.8780276
[6] U. Engel, M. Schwind, S. Stancu, New Applications of Non-Destructive Testing in Metal Forming Technology, Proceedings of the Institution of Mechanical Engineers, Part B: J. Eng. Manuf. 208 (1994) 259-267. https://doi.org/10.1243/PIME_PROC_1994_208_087_02
[7] J. Heingärtner, M. Born et al., Online Acquisition of Mechanical Material Properties of Sheet Metal for the Reduction of Product Quality by Eddy Current, 10th European Conference on Non-Destructive Testing, Moscow, Russia, 2010.
[8] J. Chen, Z. Fan, An intelligent online detection approach based on big data for mechanical properties of hot-rolled strip, IJMIC 37 (2021) 106. https://doi.org/10.1504/IJMIC.2021.120210
[9] X. Luo, Y. Wang, L. Wang, J. Xie, Y. Zhang, Non-destructive Hardness Measurement of Hot-stamped High Strength Steel Sheets based on Magnetic Barkhausen Noise, Procedia Eng. 81 (2014) 1768-1773. https://doi.org/10.1016/j.proeng.2014.10.229
[10] H. Sheng, P. Wang, C. Tang, Predicting Mechanical Properties of Cold-Rolled Steel Strips Using Micro-Magnetic NDT Technologies, Materials, Basel, Switzerland, 15 (2022). Https://doi.org/10.3390/ma15062151
[11] Y. Zhang, W. Liu, K. Li, P. Wang, C. Hang, Y. Chen, X. Han, W. Gao, Application of a back-propagation neural network for mechanical properties prediction of ferromagnetic materials by magnetic Barkhausen noise technique, Insight 61 (2019) 95-99. https://doi.org/10.1784/insi.2019.61.2.95
[12] M. Unterberg, P. Niemietz, D. Trauth, k. Wehrle, T. Bergs, In-situ material classification in sheet-metal blanking using deep convolutional neural networks, Prod. Eng. Res. Devel. 13 (2019) 743-749. https://doi.org/10.1007/s11740-019-00928-w
[13] G. Dobmann, I. Altpeter et al., Industrial applications of 3MA – Micromagnetic Multiparameter Microstructure and Stress Analysis, 5th Int. Conference Structural Integrity of Welded Structures, Timisora, Romani, 2008.
[14] F.J. Alamos, J.C. Gu et al., Evaluating the Reliability of a Nondestructive Evaluation (NDE) Tool to Measure the Incoming Sheet Mechanical Properties, in: G. Daehn, J. Cao, B. Kinsey, E. Tekkaya, A. Vivek, Y. Yoshida (Eds.), Forming the Future, Springer International Publishing, Cham, 2021, pp. 2573-2584.
[15] B. Wolter, Y. Gabi, C. Conrad, Nondestructive Testing with 3MA—An Overview of Principles and Applications, Appl. Sci. 9 (2019) 1068. https://doi.org/10.3390/app9061068
[16] K. Lee, C. Hong, E.H. Lee, W. Yang, Comparison of Artificial Intelligence Methods for Prediction of Mechanical Properties, IOP Conf. Ser.: Mater. Sci. Eng. 967 (2020) 12031. https://doi.org/10.1088/1757-899X/967/1/012031
[17] A. Zoesch, T. Wiener, M. Kuhl, Zero Defect Manufacturing: Detection of Cracks and Thinning of Material during Deep Drawing Processes, Procedia CIRP 33 (2015) 179-184. https://doi.org/10.1016/j.procir.2015.06.033
[18] K. Herrmann, M. Irle, IMPOC: an online material properties measurement system, in: Flat-Rolled Steel Processes: Advanced Technologies, 2009.
[19] G. Nastasi, C. Mocci et al., SOM-Based Analysis to Relate Non-uniformities in Magnetic Measurements to Hot Strip Mill Process Conditions, in: A. Esposito, M. Faudez-Zanuy, F.C. Morabito, E. Pasero (Eds.), Multidisciplinary Approaches to Neural Computing, Springer International Publishing, Cham, 2018, pp. 223-231.
[20] J.M. Allwood, S.R. Duncan, J. Cao, P. Groche, G. Hirt, B. Kinsey, T. Kuboki, M. Liewald, A. Sterzing, A.E. Tekkaya, Closed-loop control of product properties in metal forming, CIRP Annals 65 (2016) 573-596. https://doi.org/10.1016/j.cirp.2016.06.002
[21] X. He, X. Zhou, T. Tian, W. Li, Prediction of Mechanical Properties of Hot Rolled Strips With Generalized RBFNN and Composite Expectile Regression, IEEE Access 10 (2022) 106534-106542. https://doi.org/10.1109/ACCESS.2022.3212053
[22] A. Marmulev, L.M. Kaputkina, G. Herman, E.I. Poliak, Effects of Thermomechanical Processing on Uniformity of Microstructure and Properties of AHSS, MSF 783-786 (2014) 967-972. https://doi.org/10.4028/www.scientific.net/MSF.783-786.967
[23] A. Mukhopadhyay, A. Iqbal, Prediction of Mechanical Properties of Hot Rolled, Low-Carbon Steel Strips Using Artificial Neural Network, Mater. Manuf. Process. 20 (2005) 793-812. https://doi.org/10.1081/AMP-200055140
[24] K. Cuznar, M. Glavan, Optimization of cold rolling process recipes based on historical data, 2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON), IEEE (2022) 1-6.
[25] M. Grüber, G. Hirt, A semi-analytical model for inverse identification of cyclic material data from measured forces during roller levelling, Procedia Manuf. 29 (2019) 420-427. https://doi.org/10.1016/j.promfg.2019.02.157
[26] T. Magro, A. Ghiotti, S. Bruschi, A. Ferraiuolo, An artificial intelligence approach for the in-line evaluation of steels mechanical properties in rolling, Procedia CIRP 100 (2021) 193-198. https://doi.org/10.1016/j.procir.2021.05.054
[27] R.-P. Nikula, K. Leiviskä, Roller Leveler Monitoring Using Acceleration Measurements and Models for Steel Strip Properties, Machines 8 (2020) 43. https://doi.org/10.3390/machines8030043
[28] A. Schenek, M. Görz, M. Liewald, K. Riedmüller, Data-Driven Derivation of Sheet Metal Properties Gained from Punching Forces Using an Artificial Neural Network, Key Eng. Mater. 926 (2022) 2174-2182. https://doi.org/10.4028/p-41602a
[29] H. Kim, J.C. Gu, L. Zoller, Control of the servo-press in stamping considering the variation of the incoming material properties, IOP Conf. Ser.: Mater. Sci. Eng. 651 (2019) 12062. https://doi.org/10.1088/1757-899X/651/1/012062
[30] L. Marretta, R. Di Lorenzo, Influence of material properties variability on springback and thinning in sheet stamping processes: a stochastic analysis, Int. J. Adv. Manuf. Technol. 51 (2010) 117-134. https://doi.org/10.1007/s00170-010-2624-4
[31] N. Okuda, L. Mohr, H. Kim, A. Kitt, Profit-Driven Methodology for Servo Press Motion Selection under Material Variability, Appl. Sci. 11 (2021) 9530. https://doi.org/10.3390/app11209530
[32] D. Briesenick, M. Liewald, P. Cyron, Potentials of an adaptive blank positioning to control material and process fluctuations in deep drawing, IOP Conf. Ser.: Mater. Sci. Eng. 967 (2020) 12068. https://doi.org/10.1088/1757-899X/967/1/012068
[33] B. Endelt, Design strategy for optimal iterative learning control applied on a deep drawing process, Int. J. Adv. Manuf. Technol. 88 (2017). Https://doi.org/10.1007/s00170-016-8501-z
[34] B. Endelt, Proposing a new iterative learning control algorithm based on a non-linear least square formulation – Minimising draw-in errors, J. Phys.: Conf. Ser. 896 (2017) 12036. https://doi.org/10.1088/1742-6596/896/1/012036
[35] B. Endelt, J. Danckert, Iterative Learning and Feedback Control Applied on a Deep Drawing Process, Int. J. Mater. Form. 3 (2010) 25-28. https://doi.org/10.1007/s12289-010-0698-z
[36] P. Fischer, D. Harsch, J. Heingärtner, Y. Renkci, P. Hora, A knowledge-based control system for the robust manufacturing of deep drawn parts, Procedia Eng. 207 (2017) 42-47. https://doi.org/10.1016/j.proeng.2017.10.735
[37] P. Fischer, J. Heingärtner, W. Aichholzer, D. Hortig, P. Hora, Feedback control in deep drawing based on experimental datasets, J. Phys.: Conf. Ser. 896 (2017) 12035. https://doi.org/10.1088/1742-6596%2F896%2F1%2F012035
[38] J. Heingärtner, P. Fischer, D. Harsch, Y. Renkci, P. Hora, Q-Guard – an intelligent process control system, J. Phys.: Conf. Ser. 896 (2017) 12032. https://doi.org/10.1088/1742-6596/896/1/012032
[39] B. van Stein, M. van Leeuwen et al., Towards Data Driven Process Control in Manufacturing Car Body Parts, 2016 International Conference on Computational Science and Computational Intelligence (CSCI), 2016.
[40] S. Purr, Datenerfassung für die Anwendung lernender Algorithmen bei der Herstellung von Blechformteilen, FAU Studien aus dem Maschinenbau 338, 2020.
[41] B. Engel, S. Kersten, P. Kopfer, Process-Controlled Forming Using an Intelligent Tool on a Servo Press, Key Eng. Mater. 622-623 (2014) 780-787. https://doi.org/10.4028/www.scientific.net/KEM.622-623.780
[42] P. Lafon, P.A. Adragna, V.D. Nguyen, Multi-objective optimization under uncertainty for sheet metal forming, MATEC Web Conf. 80 (2016) 10004. https://doi.org/10.1051/matecconf/20168010004
[43] R. Waheed, H.A. Saeed et al., Process Optimization of Bending SS 304L Sheets using Multi-Objective Genetic Algorithm and FEA, 2021 International Bhurban Conference on Applied Sciences and Technologies (IBCAST), IEEE, 2021, pp. 6-9.
[44] A. Beckers, T. Hommen, M.J.K. Kornely, E. Reuter, G. Grünert, L. Ortjohann, J. Jacob, P. Niemietz, S. Barth, T. Bergs, Digitalized manufacturing process sequences – foundations and analysis of the economic and ecological potential, CIRP J. Manuf. Sci. Technol. 39 (2022) 387-400. https://doi.org/10.1016/j.cirpj.2022.09.001
[45] P. Niemietz, J. Pennekamp, I. Kunze, D. Trauth, K. Wehrle, T. Bergs, Stamping Process Modelling in an Internet of Production, Procedia Manufacturing 49 (2020) 61-68. https://doi.org/10.1016/j.promfg.2020.06.012