Control strategy for angular gradations by means of the flow forming process

Control strategy for angular gradations by means of the flow forming process

KERSTING Lukas, ARIAN Bahman, ROZO VASQUEZ Julian, TRÄCHTLER Ansgar, HOMBERG Werner, WALTHER Frank

download PDF

Abstract. Climate change, rare resources and industrial transformation processes lead to a rising demand of multi-complex lightweight forming parts, especially in aerospace and automotive sectors. In these industries, flow forming is often used to produce cylindrical forming parts by reducing the wall thickness of tubular semifinished parts, e.g. for the production of hydraulic cylinders or gear shafts. The complexity and functionality of flow forming workpieces could be significantly increased by locally graded microstructure and geometry structures. This enables customized complex hardness distributions at wear surfaces or magnetic QR codes for a unique, tamper-proof product identification. The production of those complex, 2D (axial and angular) graded forming parts currently depicts a great challenge for the process and requires new solutions and strategies. Hence, this paper proposes a novel control strategy that includes online measurements from an absolute encoder to determine the angular workpiece position. Workpieces of AISI 304L stainless steel with 2D-graded structures are successfully manufactured using this new strategy and analyzed regarding the possible accuracy and resolution of the gradation. At this point, a dependency of the gradations on the sensor and actuator dynamics, accuracy and geometry could be noted. It is further evaluated how the control strategy could be extended by an observer-based closed-loop property control approach to enhance the accuracy of the suggested strategy.

Keywords
Flow Forming, Graded Structures, Control Strategy, Closed-Loop Property Control

Published online 4/19/2023, 12 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: KERSTING Lukas, ARIAN Bahman, ROZO VASQUEZ Julian, TRÄCHTLER Ansgar, HOMBERG Werner, WALTHER Frank, Control strategy for angular gradations by means of the flow forming process, Materials Research Proceedings, Vol. 28, pp 2049-2060, 2023

DOI: https://doi.org/10.21741/9781644902479-220

The article was published as article 220 of the book Material Forming

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] E. Tekkaya, N. Ben Khalifa, G. Grzancic, R. Hölker, Forming of lightweight metal components: need of new technologies, Procedia Eng. 81 (2014) 28-37. https://doi.org/10.1016/j.proeng.2014.09.125
[2] D. Yang, M. Bambach, J. Cao, J. Duflou, P. Groche, T. Kuboki, A. Sterzing, A. Tekkaya, C. Lee, Flexibility in metal forming, CIRP Annals 67 (2018) 743-765. https://doi.org/10.1016/j.cirp.2018.05.004
[3] P. Groche, Flow forming, in: The International Academy for Production Engineering et al. (eds.), CIRP Encyclopedia of Production Engineering, Springer, Berlin, Heidelberg, 2019. https://doi.org/10.1007/978-3-662-53120-4
[4] DIN Deutsches Institut für Normung (ed.), Nichtrostende Stahlrohre – Maße, Grenzabmaße und längenbezogene Masse, Beuth, Berlin, 1996.
[5] J. Talonen, P. Apegren, H. Hänninen, Comparison of different methods for measuring strain induced α-martensite content in austenitic steels, Mater. Sci. Technol. 20 (2004) 1506-1512. https://doi.org/10.1179/026708304X4367
[6] P. Haušild, V. Davydov, J. Drahokoupil, M. Landa, P. Pilvin, Characterization of strain-induced martensitic transformation in a metastable austenitic stainless steel, Mater. Des. 31 (2010) 1821-1827. https://doi.org/10.1016/j.matdes.2009.11.008.
[7] B. Arian, W. Homberg, L. Kersting, A. Trächtler, J. Rozo Vasquez, F. Walther, Produktkennzeichnung durch lokal definierte Einstellung von ferromagnetischen Eigenschaften beim Drückwalzen von metastabilen Stahlwerkstoffen, in: G. Hirt (Ed.), 36. Aachener Stahlkolloquium – Umformtechnik “Ideen Form geben“, Aachen, 2022, pp. 333-347.
[8] L. Kersting, B. Arian. J. Rozo Vasquez, A. Trächtler, W. Homberg, F. Walther, Innovative online measurement and modelling approach for property-controlled flow forming processes, Key Eng. Mater. 926 (2022) 862-874. https://doi.org/10.4028/p-yp2hj3
[9] D. Hornjak, Grundlegende Untersuchungen der Prozess- und Werkzeugparameter und ihre Wechselwirkungen für das thermo-mechanisch unterstützte inkrementelle Umformverfahren des Reib-Drückens, Doctoral Dissertation, Paderborn University, Shaker, Aachen, 2013.
[10] B. Lossen, Ein Beitrag zur Herstellung von hybriden Bauteilen mittels Reibdrücken, Doctoral Dissertation, Paderborn University, Shaker, Düren, 2019.
[11] M.J. Roy, D.M. Maijer, R.J. Klassen, J.T. Wood, E. Schost, Analytical solution of the tooling/workpiece contact interface shape during a flow forming operation, J. Mater. Process. Technol. 210 (2010) 1976-1985. https://doi.org/10.1016/j.jmatprotec.2010.07.011