Cryogenic reverse flow forming of AISI 304L

Cryogenic reverse flow forming of AISI 304L

ARIAN Bahman, HOMBERG Werner, ROZO VASQUEZ Julian, WALTHER Frank, KERSTING Lukas, TRÄCHTLER Ansgar

download PDF

Abstract. Workpiece property-control permits the application-oriented and time-efficient production of components. In reverse flow forming, for example, a control of the microstructure profile is not yet part of the state of the art, in contrast to the geometry control. This is, due to several reasons, particularly challenging when forming seamless tubes made of metastable austenitic stainless AISI 304L steel. Inducing mechanical and/or thermal energy can cause a phase transformation from austenite to martensite within this steel. The resulting α’-martensite has different mechanical and micromagnetic properties, which can be advantageous depending on the application. For purposes of local property control, the resulting α’-martensite content should be measured and controlled online during the forming process. This paper presents results from the usage of a custom developed cryo-system and different application strategies to use liquid nitrogen as a coolant for local enhancement of the forming-temperature depending α’-martensite content.

Keywords
Reverse Flow Forming, Cryo Forming, α’-Martensite, Closed-Loop Control

Published online 4/19/2023, 12 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: ARIAN Bahman, HOMBERG Werner, ROZO VASQUEZ Julian, WALTHER Frank, KERSTING Lukas, TRÄCHTLER Ansgar, Cryogenic reverse flow forming of AISI 304L, Materials Research Proceedings, Vol. 28, pp 2037-2048, 2023

DOI: https://doi.org/10.21741/9781644902479-219

The article was published as article 219 of the book Material Forming

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] D. Yang, M. Bambach, J. Cao, J. Duflou, P. Groche, T. Kuboki, A. Sterzing, A. Tekkaya, C. Lee, Flexibility in metal forming, CIRP Annals 67 (2018) 743-765. https://doi.org/10.1016/j.cirp.2018.05.004
[2] M.S. Mohebbi, A. Akbarzadeh, Experimental study and FEM analysis of redundant strains in flow forming of tubes, J. Mater. Process. Technol. 210 (2010) 389-395. https://doi.org/10.1016/j.jmatprotec.2009.09.028
[3] B. Arian, M. Riepold, J. Rozo Vasquez, W. Homberg, A. Trächtler, F. Walther, Forming of metastable austenitic stainless steel tubes with axially graded martensite content by flow-forming, ESAFORM 2021, Proceedings of the 24th International Conference on Material Forming, 2021.
[4] M. Runge, Spinning and Flow forming: spinning and flow forming technology, product design, equipment, control systems, Verlag Moderne Industrie, Landsberg/Lech, 1994.
[5] M. Sivanandini, S. Dhami, B. Pabla, Flow forming of tubes: A review, Int. J. Sci. Eng. Res. 3 (2012) 587-597.
[6] M. Riepold, B. Arian, J.V. Rozo, W. Homberg, F. Walther, A. Trächtler, Model approaches for closed-loop property control for flow forming, Adv. Industr. Manuf. Sci. 3 (2021). https://doi.org/10.1016/j.aime.2021.100057
[7] D. Marini, D. Cunningham, P. Xirouchakis, J. Corney, Flow forming: A review of research methodologies, prediction models and their applications, Int. J. Mech. Eng. Technol. 7 (2016) 285-315.
[8] A. Weidner, Deformation processes in TRIP/TWIP steels, Springer International Publishing, Cham, 2020.
[9] N. Gey, B. Petit, M. Humbert, Electron backscattered diffraction study of ε/α martensitic variants induced by plastic deformation in 304 stainless steel, Metall. Mater. Trans. A 36A (2005) 3291-3299. https://doi.org/10.1007/s11661-005-0003-9
[10] P. Haušild, V. Davydov, J. Drahokoupil, M. Landa, P. Pilvin, Characterization of strain-induced martensitic transformation in a metastable austenitic stainless steel, Mater. Des. 31 (2010) 1821-1827. https://doi.org/10.1016/j.matdes.2009.11.008
[11] B. Arian, W. Homberg, L. Kersting, A. Trächtler, J. Rozo Vasquez, F. Walther, Produktkennzeichnung durch lokal definierte Einstellung von ferromagnetischen Eigenschaften beim Drückwalzen von metastabilen Stahlwerkstoffen, in: 36. Aachener Stahlkolloquium – Umformtechnik „Ideen Form Geben“, 2022, pp.333-347.
[12] T. Angel, Formation of martensite in austenitic stainless steels: Effects of deformation, temperature, and composition, J. Iron Steel Inst. 5 (1954) 165-174.
[13] S.K. Varma, J. Kalyanam, L. Murk, V. Srinivas, Effect of grain size on deformation-induced martensite formation in 304 and 316 stainless steels during room temperature tensile testing, J. Mater. Sci. Lett. 13 (1994) 107-111. https://doi.org/10.1007/BF00416816
[14] J. Biehler, H. Hoche, M. Oechsner, Nitriding behavior and corrosion properties of AISI 304L and 316L austenitic stainless steel with deformation-induced martensite, Surf. Coat. Technol. 324 (2017) 121-128. https://doi.org/10.1016/j.surfcoat.2017.05.059
[15] J. Talonen, P. Aspegren, H. Hänninen, Comparison of different methods for measuring strain induced α-martensite content in austenitic steels, Mater. Sci. Technol. 20 (2004) 1506-1512. https://doi.org/10.1179/026708304X4367
[16] M. Astudillo, M. Nicolás, J. Ruzzante, M. Gómez, G. Ferrari, L. Padovese, M. Pumarega, Correlation between martensitic phase transformation and magnetic Barkhausen noise of AISI 304 steel, Procedia Mater. Sci. 9 (2015) 435-443. https://doi.org/10.1016/j.mspro.2015.05.014