Exploring sheath-core yarns technology to optimise bio-composite performances

Exploring sheath-core yarns technology to optimise bio-composite performances

QUEREILHAC Delphine, FEMERY Jules, MOREL Guillaume, KORYCKI Adrian, DE LUYCKER Emmanuel, OUAGNE Pierre, CHABERT France

download PDF

Abstract. This work focuses on the design and fabrication of a continuous filament made of flax yarn and bio-based thermoplastic polymer. For this purpose, the sheath-core process has been explored by using an extrusion laboratory line equipped with a wire coating die to manufacture a flax core coated with PLA. The polymer properties were investigated (thermal transition, mechanical properties, melt viscosity) to link the polymer properties, the process and the properties of the resulting filament. The filament diameter decreases and surface defects appear when the pulling speed increases. The mechanical characterization of flax/PLA filaments demonstrates a higher elastic modulus, higher stress at break and lower strain at break as compared with pure PLA filaments. Such PLA coated flax filaments are a relevant option to widespread the use of biobased composites.

Keywords
Flax, Biocomposite, Extrusion, Sheath-Core, 3D Printing

Published online 4/19/2023, 10 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: QUEREILHAC Delphine, FEMERY Jules, MOREL Guillaume, KORYCKI Adrian, DE LUYCKER Emmanuel, OUAGNE Pierre, CHABERT France, Exploring sheath-core yarns technology to optimise bio-composite performances, Materials Research Proceedings, Vol. 28, pp 1809-1818, 2023

DOI: https://doi.org/10.21741/9781644902479-196

The article was published as article 196 of the book Material Forming

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] J.J. Andrew, H.N. Dhakal, Sustainable biobased composites for advanced applications: recent trends and future opportunities – A critical review, Compos. Part C: Open Access 7 (2022) 100220. https://doi.org/10.1016/j.jcomc.2021.100220
[2] T. Gurunathan, S. Mohanty, S.K. Nayak, A review of the recent developments in biocomposites based on natural fibres and their application perspectives, Compos. Part A: Appl. Sci. Manuf. 77 (2015) 1 25. https://doi.org/10.1016/j.compositesa.2015.06.007
[3] M.P.M. Dicker, P.F. Duckworth, A.B. Baker, G. Francois, M.K. Hazzard, P.M. Weaver, Green composites: A review of material attributes and complementary applications, Compos. Part A: Appl. Sci. Manuf. 56 (2014) 280 289. https://doi.org/10.1016/j.compositesa.2013.10.014
[4] O. Faruk, A. K. Bledzki, H.-P. Fink, M. Sain, Biocomposites reinforced with natural fibers: 2000–2010, Prog. in Polym. Scie. 37 (2012) 1552-1596.
[5] A.N. Netravali, S. Chabba, Composites get greener, Mat. Today 6 (2003) 22-29. https://doi.org/10.1016/S1369-7021(03)00427-9
[6] L. Pil, F. Bensadoun, J. Pariset, I. Verpoest, Why are designers fascinated by flax and hemp fibre composites?, Compos. Part A: Appl. Sci. Manuf. 83 (2016) 193 205. https://doi.org/10.1016/j.compositesa.2015.11.004
[7] A. Melelli, O. Arnould, J. Beaugrand, A. Bourmaud, The Middle Lamella of Plant Fibers Used as Composite Reinforcement: Investigation by Atomic Force Microscopy, Molecules 25 (2020) 632. https://doi.org/10.3390/molecules25030632
[8] C. Baley, F. Busnel, Y. Grohens, O. Sire, Influence of chemical treatments on surface properties and adhesion of flax fibre–polyester resin, Compos. Part A: Appl. Sci. Manuf. 37 (2006) 1626 1637. https://doi.org/10.1016/j.compositesa.2005.10.014
[9] D. Stoof, K. Pickering, Y. Zhang, Fused Deposition Modelling of Natural Fibre/Polylactic Acid Composites, J. Compos. Sci. 1 (2017) 8. https://doi.org/10.3390/jcs1010008
[10] S. Valvez, P. Santos, J.M. Parente, M.P. Silva, P.N.B. Reis, 3D printed continuous carbon fiber reinforced PLA composites: A short review, Procedia Struct. Integrity 25 (2020) 394 399. https://doi.org/10.1016/j.prostr.2020.04.056
[11] G. Rajeshkumar, S. Arvindh Seshadri, G.L. Devnani, M.R. Sanjay, Suchart Siengchin,
J. Prakash Maran, Naif Abdullah Al-Dhabi, Ponmurugan Karuppiah, Valan Arasu Mariadhas,
N. Sivarajasekar, A. Ronaldo Anuf, Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites – A comprehensive review, J. Clean. Prod. 310 (2021) 127483. https://doi.org/10.1016/j.jclepro.2021.127483
[12] AFNOR, NF EN ISO 2062 – Textiles – Yarns from packages – Determination of single-end breaking force and elongation at break using constant rate of extension (CRE) tester, 2010
[13] D. Garlotta, A Literature Review of Poly(Lactic Acid), Jour. of Poly. and the Envi. 9 (2001) 63-84. https://doi.org/10.1023/A:1020200822435
[14] J. Huang, M.S. Lisowski, J. Runt, E.S. Hall, R.T. Kean, N. Buehler, J.S. Lin, Crystallization and Microstructure of Poly( L -lactide- co – meso -lactide) Copolymers, Macromolecules 31(1998) 2593 2599. https://doi.org/10.1021/ma9714629
[15] G.L. Siparsky, K.J. Voorhees, J.R. Dorgan, K. Schilling, Water transport in polylactic acid (PLA), PLA/ polycaprolactone copolymers, and PLA/polyethylene glycol blends, Jour. of Envir. Polym. Degrad. 5 (1997) 125-136. https://doi.org/10.1007/BF02763656
[16] G. Perego, G.D. Cella, C. Bastioli, Effect of molecular weight and crystallinity on poly(lactic acid) mechanical properties, J. Appl. Polym. Sci. 59 (1996) 37 43. https://doi.org/10.1002/(SICI)1097-4628(19960103)59:1<37::AID-APP6>3.0.CO;2-N
[17] Q. Fang, M.A. Hanna, Rheological properties of amorphous and semicrystalline polylactic acid polymers, Industrial Crops and Products 10 (1999) 47 53. https://doi.org/10.1016/S0926-6690(99)00009-6
[18] Y. Ikada, K. Jamshidi, H. Tsuji, S.H. Hyon, Stereocomplex formation between enantiomeric poly(lactides), Macromolecules 20 (1987) 904-906. https://doi.org/10.1021/ma00170a034
[19] S. Saeidlou, M.A. Huneault, H. Li, P. Sammut, C.B. Park, Evidence of a dual network/spherulitic crystalline morphology in PLA stereocomplexes, Polymer 53 (2012) 5816 5824. https://doi.org/10.1016/j.polymer.2012.10.030
[20] H. J. Lehermeier, J.R. Dorgan, Melt rheology of poly(lactic acid): Consequences of blending chain architectures, Polym. Eng. Sci. 41 (2001) 2172 2184. https://doi.org/10.1002/pen.10912
[21] N. El Kissi, J.-M. Piau, F. Toussaint, Sharkskin and cracking of polymer melt extrudates, J. Non-Newtonian Fluid Mech. 68 (1997) 271 290. https://doi.org/10.1016/S0377-0257(96)01507-8