Coefficient of friction of cemented carbides machined by sinking EDM

Coefficient of friction of cemented carbides machined by sinking EDM

PETERSEN Timm, KÜPPER Ugur, HERRIG Tim, BERGS Thomas

download PDF

Abstract. Cemented carbides possess properties that predestine them as a durable tool. However, these properties hinder conventional machining, which is why Electrical Discharge Machining (EDM) is a promising alternative. Three different EDMed cemented carbides were compared with a ground surface in a pin-on-disk test setup. They were evaluated under dry and lubricated conditions with two distinct antibody materials. The tests did not reveal a correlation between the surface roughness of the cemented carbide pins and the coefficient of friction. However, some test sets yielded very different results, which is why particular considerations should be made with new sliding compositions.

Keywords
Sinking Electrical Discharge Machining, Cemented Carbide, Coefficient of Friction

Published online 4/19/2023, 10 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: PETERSEN Timm, KÜPPER Ugur, HERRIG Tim, BERGS Thomas, Coefficient of friction of cemented carbides machined by sinking EDM, Materials Research Proceedings, Vol. 28, pp 1765-1774, 2023

DOI: https://doi.org/10.21741/9781644902479-191

The article was published as article 191 of the book Material Forming

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] F. Klocke, Manufacturing processes: Forming, Springer, Berlin, New York (2013) ISBN: 978-3-642-36772-4.
[2] U. Engel, J. Groenback, C. Hinsel, Tooling solutions for challenges in cold forging, Umformtechnik (2011).
[3] J. Cao, E. Brinksmeier, M. Fu, R.X. Gao, B. Liang, M. Merklein, M. Schmidt, J. Yanagimoto, Manufacturing of advanced smart tooling for metal forming, CIRP Annals, 68 (2019) 605-628. https://doi.org/10.1016/j.cirp.2019.05.001
[4] H. Voigts, R. Hild, A. Feuerhack, T. Bergs, Investigation of Failure Mechanisms of Cemented Carbide Fine Blanking Punches by Means of Process Forces and Acoustic Emission, in Forming the Future, Springer, Cham (2021) 1173-1187. https://doi.org/10.1007/978-3-030-75381-8_98
[5] O. Baer, A. Feuerhack, H. Voigts, T. Bergs, Investigation of the Mechanical Punch Loads during Fine Blanking of High-Strength Steels with Cemented Carbide, Procedia Manuf. 34 (2019) 90-100. https://doi.org/10.1016/j.promfg.2019.06.125
[6] L. Prakash, Editor, Comprehensive Hard Materials: Fundamentals and General Applications of Hardmetals, Elsevier, 2014. ISBN: 9780080965284.
[7] E.L. Silva, S. Pratas, M.A. Neto, C.M. Fernandes, D. Figueiredo, R.F. Silva, Multilayer Diamond Coatings Applied to Micro-End-Milling of Cemented Carbide, Materials 14 (2021) 3333. https://doi.org/10.3390/ma14123333
[8] K. Andreas, M. Merklein, U. Engel, Influence of Combined Hard and Fine Machining on the Surface Properties of Cemented Carbides, Tribology in Industry 34 (2012) 119-127.
[9] F. Klocke, W. König, Fertigungsverfahren: Abtragen, Generieren und Lasermaterialbearbeitung, Springer, Berlin, New York, 2007. ISBN: 9783540236504.
[10] R. Hess, P. Grethe, L. Heidemanns, T. Herrig, A. Klink, T. Bergs, Simulation based derivation of changed rim zone properties caused by thermal loadings during EDM process, Procedia CIRP 113 (2022) 41-46. https://doi.org/10.1016/j.procir.2022.09.117
[11] H. Juhr, H.-P. Schulze, G. Wollenberg, K. Künanz, Improved cemented carbide properties after wire-EDM by pulse shaping, J. Mater. Process. Technol. 149 (2004) 178-183. https://doi.org/10.1016/j.jmatprotec.2004.02.037
[12] T. Petersen, U. Küpper, A. Klink, T. Herrig, T. Bergs, Discharge energy based optimisation of sinking EDM of cemented carbides, Procedia CIRP 108 (2022) 734-739. https://doi.org/10.1016/j.procir.2022.03.113
[13] S. Fang, S. Klein, C.-J. Hsu, L. Llanes, C. Gachot, D. Bähre, Fabrication and tribological performance of a laser-textured hardmetal guiding stone for honing processes, Int. J. Refract. Metal. Hard Mater. 84 (2019) 105034. https://doi.org/10.1016/j.ijrmhm.2019.105034
[14] W. Zhao, N. He, L. Li, Friction and Wear Properties of WC-Co Cemented Carbide Sliding against Ti6Al4V Alloy in Nitrogen Gas, Adv. Mater. Res. 188 (2011) 49-54. https://doi.org/10.4028/www.scientific.net/AMR.188.49
[15] K.W. Liew, C.K. Kok, M.N. Ervina Efzan, Effect of EDM dimple geometry on friction reduction under boundary and mixed lubrication, Tribol. Int. 101 (2016) 1-9. https://doi.org/10.1016/j.triboint.2016.03.029
[16] R. Zhou, J. Cao, Q.J. Wang, F. Meng, K. Zimowski, Z.C. Xia, Effect of EDT surface texturing on tribological behavior of aluminum sheet, J. Mater. Process. Technol. 211 (2011) 1643-1649. https://doi.org/10.1016/j.jmatprotec.2011.05.004
[17] D. Sari, D. Welling, C. Löpenhaus, F. Klocke, A. Klink, Adjusting Surface Integrity of Gears Using Wire EDM to Increase the Flank Load Carrying Capacity, Procedia CIRP 45 (2016) 295-298. https://doi.org/10.1016/j.procir.2016.02.355
[18] T. Bergs, U. Tombul, D. Mevissen, A. Klink, J. Brimmers, Load Capacity of Rolling Contacts Manufactured by Wire EDM Turning, Procedia CIRP 87 (2020) 474-479. https://doi.org/10.1016/j.procir.2020.02.111
[19] T. Petersen, U. Küpper, T. Herrig, A. Klink, T. Bergs, Fracture Toughness and Tribological Properties of Cemented Carbides Machined by Sinking Electrical Discharge Machining, ESAFORM 2021 (2021) 13. https://doi.org/10.25518/esaform21.1518
[20] CERATIZIT, Complete programme wear parts 2015. https://www.ceratizit.com/uploads/tx_extproduct/files/GD_KT_PRO-0272-0915_SEN_ABS_V1.pdf. Accessed 19 June 2020.
[21] P.-M. Mattfeld, Tribologie der zinkphosphatfreien Kaltmassivumformung, Dissertation, RWTH Aachen University, Aachen, 2014. ISBN: 978-3-86359-195-3.
[22] T. Bergs, T. Petersen, U. Tombul, A. Klink, Analysis of the Influence of Surface Integrity of Cemented Carbides Machined by Sinking EDM on Flexural Fatigue, Procedia CIRP 87 (2020) 456-461. https://doi.org/10.1016/j.procir.2020.02.096
[23] L. Llanes, Influence of electrical discharge machining on the sliding contact response of cemented carbides, Int. J. Refract. Metal. Hard Mater. 19 (2001) 35-40. https://doi.org/10.1016/S0263-4368(00)00045-7
[24] K. Bonny, P. de Baets, W. Ost, J. Vleugels, S. Huang, B. Lauwers, W. Liu, Influence of electrical discharge machining on the reciprocating sliding wear response of WC-Co cemented carbides, Wear 266 (2009) 84-95. https://doi.org/10.1016/j.wear.2008.05.009