Modeling electrochemical machining based on effective parameters
WAIMANN Johanna, VAN DER VELDEN Tim, SCHMIDT Annika, RITZERT Stephan, REESE Stefanie
download PDFAbstract. The process of electrochemical machining uses chemical reactions to dissolve material of the surface layer. This special kind of processing avoids undesired microstructural changes in the surface, such as the formation of dislocations. ECM is thus a very promising processing technique for high-strength materials. To model the complex chemical reactions in a computationally efficient manner, an inner variable is introduced, which describes the dissolution level of the material. The evolution of the inner variable is formulated based on Faraday’s law of electrolysis. Furthermore, the use of an effective formulation of the necessary material parameters enables to consider this homogenized description of the dissolution process within an electrical finite element framework. Each effective material parameter is a result of classical mixture rules.
Keywords
Electrochemical Machining, Effective Parameters, Material Modeling, Finite Element Method
Published online 4/19/2023, 6 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: WAIMANN Johanna, VAN DER VELDEN Tim, SCHMIDT Annika, RITZERT Stephan, REESE Stefanie, Modeling electrochemical machining based on effective parameters, Materials Research Proceedings, Vol. 28, pp 1759-1764, 2023
DOI: https://doi.org/10.21741/9781644902479-190
The article was published as article 190 of the book Material Forming
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] C.H. Hamann, W. Vielstich, Electrochemistry, 3. tot. rev. and enl. ed., Wiley-VCH, Weinheim, 1998.
[2] F. Klocke, A. Klink, D. Veselovac, D.K. Aspinwall, S.L. Soo, M. Schmidt, J. Schilp, G. Levy, J.-P. Kruth, Turbomachinery component manufacture by application of electrochemical, electro-physical and photonic processes, CIRP Ann. – Manuf. Technol. 63 (2014) 703-726. https://doi.org/10.1016/j.cirp.2014.05.004
[3] A.E. DeBarr, D.A. Oliver, Electrochemical Machining, Macdonald & Co., Ltd, London, 1968.
[4] J.A. McGeough, Principles of Electrochemical Machining, first ed., Chapman & Hall, London, 1974. https://doi.org/10.1002/cite.330472314
[5] T. Bergs, S. Harst, Development of a process signature for electrochemical Machining, CIRP Ann. – Manuf. Technol. 69 (2020) 153-156. https://doi.org/10.1016/j.cirp.2020.04.078
[6] T. van der Velden, B. Rommes, A. Klink, S. Reese, J. Waimann, A novel approach for the efficient modeling of material dissolution in electrochemical machining, Int. J. Solids Struct. 229 (2021) 111106. https://doi.org/10.1016/j.ijsolstr.2021.111106
[7] T. van der Velden, S. Ritzert, S. Reese, J. Waimann, Modeling moving boundary value problems in electrochemical machining, accepted in Int. J. Numer. Methods Eng. (2022).
[8] J.L. Pérez-Aparicio, R.L. Taylor, and D. Gavela, Finite element analysis of nonlinear fully coupled thermoelectric materials, Comput. Mech. 40 (2007) 35-45. https://doi.org/10.1007/s00466-006-0080-7
[9] S. Harst, Development of a process signature for electrochemical machining, first ed., Apprimus Wissenschaftsverlag, Aachen, 2019.
[10] J. Waimann, T. van der Velden, A. Schmidt, S. Ritzert, S. Reese, Consideration of chemically-induced damage in a thermo-electrically coupled system, accepted in Proc. Appl. Math. Mech. (2022).