A numerical procedure to test the effects of the main variables in the submerged arc welding process

A numerical procedure to test the effects of the main variables in the submerged arc welding process

CONTE Romina, RODRÌGUEZ IZQUIERDO David, GAGLIARDI Francesco, AMBROGIO Giuseppina, FILICE Luigino

download PDF

Abstract. Arc welding processes (AWPs) are performed by generating an electric arc between a metal electrode and the workpiece to be joined. Submerged arc welding, belonging to AWPs, is characterized by the peculiarity that the arc is not visible. Indeed, a granular fusible material flux is employed in the process to shield the parts to be processed, avoiding arc radiation and fumes and, at the same time, reducing the oxidation risks of the welded metals. The main process variables are current, voltage and welding speed. These variables have to be properly set to balance the specific heat in the weld pool for a proper process optimization.

Keywords
Fusion Welding, Finite Element Method, Numerical Analysis

Published online 4/19/2023, 8 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: CONTE Romina, RODRÌGUEZ IZQUIERDO David, GAGLIARDI Francesco, AMBROGIO Giuseppina, FILICE Luigino, A numerical procedure to test the effects of the main variables in the submerged arc welding process, Materials Research Proceedings, Vol. 28, pp 1711-1718, 2023

DOI: https://doi.org/10.21741/9781644902479-185

The article was published as article 185 of the book Material Forming

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] R. Singh, Applied welding engineering: processes, codes, and standards., Butterworth-Heinemann, 2020.
[2] J.A. Schey, Introduction to Manufacturing Processes, 3rd editio, McGraw-Hill Higher Education, 2000.
[3] A. Singh, R.P. Singh, A review of effect of welding parameters on the mechanical properties of weld in submerged arc welding process, Mater. Today Proc. 26 (2020) 1714-1717. https://doi.org/10.1016/j.matpr.2020.02.361
[4] M. Zhang, Y. Han, C. Jia, Z. Zheng, H. Li, C. Wu, Improving the microstructures and mechanical properties with nano-Al2O3 treated wire in underwater submerged arc welding, J. Manuf. Process. 74 (2022) 40-51. https://doi.org/10.1016/j.jmapro.2021.11.056
[5] G. Labeas, I. Diamantakos, Numerical investigation of through crack behaviour under welding residual stresses, Eng. Fract. Mech. 76 (2009) 1691-1702. https://doi.org/10.1016/j.engfracmech.2009.03.006
[6] M. Jou, Experimental Investigation of Resistance Spot Welding for Sheet Metals Used in Automotive Industry., JSME Int. J. Ser. C. 44 (2001) 544-552. https://doi.org/10.1299/jsmec.44.544
[7] Z. Pu, D.Umbrello O., W. Dillon Jr, Jawahir S., Finite Element Simulation of Residual Stresses in Cryogenic Machining of AZ31B Mg Alloy, Procedia CIRP 13 (2014) 282-287. https://doi.org/10.1016/j.procir.2014.04.048
[8] G. Rotella, S. Rinaldi, L. Filice, Roller burnishing of Ti6Al4V under different cooling/lubrication conditions and tool design: effects on surface integrity, Int. J. Adv. Manuf. Tech. 106 (2020) 431-434. https://doi.org/10.1007/s00170-019-04631-z
[9] H.M.E. Ramos, S.M.O. Tavares, P.M.S.T. de Castro, Numerical modelling of welded T-joint configurations using SYSWELD, Sci. Technol. Mater. 30 (2018) 6-15. https://doi.org/10.1016/j.stmat.2018.08.002
[10] G. Romaní, A. Portolés, Modelo tridimensional de simulación por MEF para estudiar la influencia de variables esenciales de soldadura robotizada GMAW en uniones a tope planas., Sold. y Tecnol. Unión. 19 (2008) 22-26.
[11] J. Goldak, A. Chakravarti, M. Bibby, A new finite element model for welding heat sources, Metall. Trans. B. 15 (1984) 299-305. https://doi.org/10.1007/BF02667333
[12] J.H. Chujutalli, M.I. Lourenço, S.F. Estefen, Experimental-based methodology for the double ellipsoidal heat source parameters in welding simulations, Mar. Syst. Ocean Technol. 15 (2020) 110-123. https://doi.org/10.1007/s40868-020-00074-4