Digital twin for the determination of process input variables for electrochemical precision machining according to DIN SPEC 91399
THIELECKE Alexander, MEICHSNER Gunnar, HACKERT-OSCHÄTZCHEN Matthias
download PDFAbstract. The ablation results with electrochemical precision machining (PECM) are essentially influenced by the material to be processed and by the current density distribution in the working gap. Therefore, ablation experiments according to DIN SPEC 91399 are essential to determine the material-specific removal characteristics and to derive process input variables for the process design. A main limitation of these experiments is the lack of accessibility at crucial surfaces on the workpiece and on the device, which means that relevant information such as the local current density distribution or the local temperature field cannot be measured. To face the mentioned limitation, the aim of this work was to develop a digital twin for an experiment for PECM according to DIN SPEC 91399. The digital twin is based on a commercial multiphysics simulation software with the main property that the calculation time of the model is less than the real time for the experiment to allow a simultaneous processing of experiment and simulation. Via suitable interfaces, experiment and simulation can be interconnected in future. Based on this, the digital twin can be applied to evaluate parameters, monitor the process in real time and adapt it accordingly. The design and the properties of the digital twin will be shown exemplary for an experiment with the workpiece material steel 1.4301.
Keywords
Electrochemical Machining, Multiphysics Simulation
Published online 4/19/2023, 10 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: THIELECKE Alexander, MEICHSNER Gunnar, HACKERT-OSCHÄTZCHEN Matthias, Digital twin for the determination of process input variables for electrochemical precision machining according to DIN SPEC 91399, Materials Research Proceedings, Vol. 28, pp 1653-1662, 2023
DOI: https://doi.org/10.21741/9781644902479-178
The article was published as article 178 of the book Material Forming
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] Deutsche Institut für Normung e. V. (DIN), Fertigungsverfahren – Begriffe, Einteilung, 2020.
[2] A. Schubert, G. Meichsner, M. Hackert-Oschätzchen, M. Zinecker, J. Edelmann, Präzise elektrochemische Bearbeitung von pulvermetallurgischen Stählen, Galvanotechnik (2012).
[3] G. Meichsner, Entwicklung und Realisierung einer Methode zur Bestimmung von Prozesseingangsgrößen für das elektrochemische Präzisionsabtragen, Verlag Wissenschaftliche Scripten, 2018, ISBN: 3957350875
[4] F. Klocke, W. König, Fertigungsverfahren 3, Springer, Berlin, New York, 2005-2008, ISBN: ISBN 978-3-540-48954-2
[5] T.L. Lievestro, Electrochemical Machining, in: ASM handbook, 9th ed., ASM International, Metals Park, Ohio, 1989, pp. 533-541, ISBN: 978-1-62708-188-7.
[6] A. de Silva, H. Altena, J.A. McGeough, Precision ECM by Process Characteristic Modelling, CIRP Annals 49 (2000) 151-155. https://doi.org/10.1016/S0007-8506(07)62917-5
[7] Deutsche Institut für Normung e. V. (DIN), Methode zur Bestimmung von Prozesseingangsgrößen für das elektrochemische Präzisionsabtragen – Anforderungen, Kriterien, Festlegungen, 2018.
[8] G. Meichsner, M. Hackert-Oschätzchen, M. Krönert, J. Edelmann, A. Schubert, M. Putz, Fast Determination of the Material Removal Characteristics in Pulsed Electrochemical Machining, Procedia CIRP 46 (2016) 123-126. https://doi.org/10.1016/j.procir.2016.03.175
[9] M. Hackert-Oschätzchen, Gestaltung von elektrochemischen Abtragprozessen durch Multiphysiksimulation gezeigt an der Endformgebung von Mikrobohrungen, Verlag Wissenschaftliche Scripten, Auerbach/Vogtl., 2015, ISBN: 978-3-95735-028-2