Phase field modeling of ductile fracture and application in metal forming
WASEEM Sarim, ERDOGAN Can, YALÇINKAYA Tuncay
download PDFAbstract. A phase field model for ductile fracture is coupled with the Modified Mohr Coulomb (MMC) model for plastic damage evolution and subsequent crack growth. An energy-based damage threshold is applied to control degradation due to ductile damage. The model is implemented through a user subroutine. MMC parameters from the literature are utilized and found to be compatible with the model, accurately reproducing material response curves in a variety of loading conditions for 6016-T4 aluminum alloy. The influence of model parameters is demonstrated and additionally the Nakazima test is simulated to demonstrate the capability of the model predicting the formability of the material through a failure locus. The model is found capable of reproducing experimentally observed crack paths and quantitative material behavior.
Keywords
Phase Field Fracture, Ductile Fracture, Finite Element Method
Published online 4/19/2023, 10 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: WASEEM Sarim, ERDOGAN Can, YALÇINKAYA Tuncay, Phase field modeling of ductile fracture and application in metal forming, Materials Research Proceedings, Vol. 28, pp 1593-1602, 2023
DOI: https://doi.org/10.21741/9781644902479-172
The article was published as article 172 of the book Material Forming
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] A.A. Griffith, The phenomena of rupture and flow in solids, Philos. Trans. Royal Soc. A. 582-593 (1921) 163-198. https://doi.org/10.1098/rsta.1921.0006
[2] G.A. Francfort, J.J. Marigo, Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solid. 46 (1998) 1319-1342. https://doi.org/10.1016/S0022-5096(98)00034-9
[3] B. Bourdin, G.A. Francfort, J.J. Marigo, Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids 48 (2000) 797-826. https://doi.org/10.1016/S0022-5096(99)00028-9
[4] C. Miehe, F. Welschinger, M. Hofacker, Thermodynamically consistent phase‐field models of fracture: Variational principles and multi‐field FE implementations, Int. J. Numer. Methods Eng. 83 (2010) 1273-1311. https://doi.org/10.1002/nme.2861
[5] M.J. Borden, C.V. Verhoosel, M.A. Scott, T.J.R. Hughes, C.M. Landis, A phase-field description of dynamic brittle fracture, Comput. Methods Appl. Mech. Eng. 217–220 (2012) 77-95. https://doi.org/10.1016/j.cma.2012.01.008
[6] S. Teichtmeister, D. Kienle, F. Aldakheel, M.-A. Keip, Phase field modeling of fracture in anisotropic brittle solids, Int. J. Non Linear Mech. 97 (2017) 1-21. https://doi.org/10.1016/j.ijnonlinmec.2017.06.018
[7] S. Waseem, I.E. Unsal, T. Yalçinkaya, Phase Field Modelling of Fatigue Crack Growth at Constant and Variable Amplitude Loading, Procedia Struct. Integr. 42 (2022) 1692-1699. https://doi.org/10.1016/j.prostr.2022.12.213
[8] F.P. Duda, A. Ciarbonetti, P.J. Sánchez, A.E. Huespe, A phase-field/gradient damage model for brittle fracture in elastic–plastic solids, Int. J. Plast. 65 (2015) 269-296. https://doi.org/10.1016/j.ijplas.2014.09.005
[9] M. Ambati, T. Gerasimov, L.D. Lorenzis, Phase-field modeling of ductile fracture, Comput. Mech. 55 (2015) 1017–1040. https://doi.org/10.1007/s00466-015-1151-4
[10] M.J. Borden, T.J.R. Hughes, C.M. Landis, A. Anvari, I.J. Lee, A phase-field formulation for fracture in ductile materials: Finite deformation balance law derivation, plastic degradation, and stress triaxiality effects, Comput. Methods Appl. Mech. Eng. 312 (2016) 130-166. https://doi.org/10.1016/j.cma.2016.09.005
[11] C. Miehe, F. Aldakheel, A. Raina, Phase field modeling of ductile fracture at finite strains: A variational gradient-extended plasticity-damage theory, Int. J. Plast. 84 (2016) 1-32. https://doi.org/10.1016/j.ijplas.2016.04.011
[12] B. Yin, M. Kaliske, A ductile phase-field model based on degrading the fracture toughness: Theory and implementation at small strain, Comput. Methods Appl. Mech. Eng. 366 (2020) 113068. https://doi.org/10.1016/j.cma.2020.113068
[13] H. Ulmer, M. Hofacker, C. Miehe, Phase field modeling of brittle and ductile fracture, PAMM 13 (2013) 533-536. https://doi.org/10.1002/pamm.201310258
[14] Y. Bao, T. Wierzbicki, On fracture locus in the equivalent strain and stress triaxiality space, Int. J. Mech. Sci. 46 (2004) 81-98. https://doi.org/10.1016/j.ijmecsci.2004.02.006.
[15] Y. Bai, T. Wierzbicki, Application of extended Mohr–Coulomb criterion to ductile fracture, Int. J. Fract. 161 (2010). Https://doi.org/10.1007/s10704-009-9422-8
[16] H. Vural, C. Erdogan, T.O. Fenercioğlu, T. Yalçinkaya, Ductile failure prediction during the flow forming process, Procedia Struct. Integr. 35 (2022) 25-33. https://doi.org/10.1016/j.prostr.2021.12.044
[17] C. Erdogan, H. Vural, T.O. Fenercioğlu, T. Yalçinkaya, Effect of process parameters on the ductile failure behavior of flow forming process, Procedia Struct. Integr. 42 (2022) 1643-1650. https://doi.org/10.1016/j.prostr.2022.12.207
[18] C. Li, J. Fang, C. Wu, G. Sun, G. Steven, Q. Li, Phase field fracture in elasto-plastic solids: Incorporating phenomenological failure criteria for ductile materials, Comput. Methods Appl. Mech. Eng. 391 (2022) 114580. https://doi.org/10.1016/j.cma.2022.114580
[19] S.A. Vajari, M. Neuner, P.K. Arunachala, A. Ziccarelli, G. Deierlein, C. Linder, A thermodynamically consistent finite strain phase field approach to ductile fracture considering multi-axial stress states, Comput. Methods Appl. Mech. Eng. 400 (2022) 115467. https://doi.org/10.1016/j.cma.2022.115467
[20] Y. Navidtehrani, C. Betegón, E. Martínez-Pañeda, A simple and robust Abaqus implementation of the phase field fracture method, Appl. Eng. Sci. 6 (2021) 100050. https://doi.org/10.1016/j.apples.2021.100050
[21] H. Granum, D. Morin, T. Børvik, O.S. Hopperstad, Calibration of the modified Mohr-Coulomb fracture model by use of localization analyses for three tempers of an AA6016 aluminium alloy, Int. J. Mech. Sci. 192 (2021) 106122. https://doi.org/10.1016/j.ijmecsci.2020.106122
[22] K. Nakazima, T. Kikuma, K. Hasuka, Study on the Formability of Steel Sheets, Yamata Technical Report 264 (1968) 8517-8530.
[23] R. Alessi, J.J. Marigo, S. Vidoli, Gradient Damage Models Coupled with Plasticity and Nucleation of Cohesive Cracks, Arch. Rational Mech. Anal. 214 (2014) 575-615. https://doi.org/10.1007/s00205-014-0763-8
[24] R. Amaral, A.D. Santos, C. de Sá José, S. Miranda, Formability prediction for AHSS materials using damage models, J. Phys. Conf. Ser. 843 (2017) 012018. https://doi.org/10.1088/1742-6596/843/1/012018
[25] M.B. Gorji, D. Mohr, Predicting shear fracture of aluminum 6016-T4 during deep drawing: Combining Yld-2000 plasticity with Hosford–Coulomb fracture model, Int. J. Mech. Sci. 137 (2018) 105-120. https://doi.org/10.1016/j.ijmecsci.2018.01.008