Fused filament fabrication: Numerical adhesion modeling suitable for semicrystalline polymers
BENARBIA Adel, SOBOTKA Vincent, BOYARD Nicolas, ROUA Christophe
download PDFAbstract. Numerous studies have been conducted to improve the adhesion quality at the interface between the filaments which remains one of the weak points in the FFF process. The interfacial adhesion of printed parts has already been investigated by several authors for amorphous polymers. However, for semicrystalline polymers, the influence of crystallization on adhesion kinetics as well as the description of partial melting at interfaces between filaments are not well taken into account in the models describing FFF process. The purpose of this work consists of proposing a predictive multiphysics model that enables the prediction of the adhesion degree for semi-crystalline polymers during FFF process. The coupling of a crystallization and melting model allows the estimation of the crystalline degree evolution at the interface. The use of a recent model predicting the molecular mobility as a function of temperature and crystallization makes it possible to estimate the degree of healing in anisothermal conditions. Finally, a parametric study is performed in order to propose process window improving the adhesion quality.
Keywords
Fused Filament Fabrication (FFF), Heat Transfer, Adhesion, Interfacial Bonding, Crystallization, Phase Transformation, Semicrystalline Polymer, Numerical Simulation
Published online 4/19/2023, 10 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: BENARBIA Adel, SOBOTKA Vincent, BOYARD Nicolas, ROUA Christophe, Fused filament fabrication: Numerical adhesion modeling suitable for semicrystalline polymers, Materials Research Proceedings, Vol. 28, pp 139-148, 2023
DOI: https://doi.org/10.21741/9781644902479-16
The article was published as article 16 of the book Material Forming
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] D. Popescu, A. Zapciu, C. Amza, F. Baciu, R. Marinescu, FDM process parameters influence over the mechanical properties of polymer specimens: A review, Polymer Test. 69 (2018) 157–66. https://doi.org/10.1016/j.polymertesting.2018.05.020
[2] A. Lepoivre, N. Boyard, A. Levy, V. Sobotka, Heat Transfer and Adhesion Study for the FFF, Additive Manufacturing Process. Procedia Manuf. 47 (2020) 948-955. https://doi.org/10.1016/j.promfg.2020.04.291
[3] D. Xu, Y. Zhang, F. Pigeonneau, Thermal analysis of the fused filament fabrication printing process: Experimental and numerical investigations, Int. J. Mater. Form. 14 (2021) 763-776. https://doi.org/10.1007/s12289-020-01591-8
[4] E. Barocio, B. Brenken, A. Favaloro, R.B. Pipes, Interlayer fusion bonding of semi-crystalline polymer composites in extrusion deposition additive manufacturing, Compos. Sci. Technol. 230 (2022) 109334. https://doi.org/10.1016/j.compscitech.2022.109334
[5] De Gennes. Reptation of a Polymer Chain in the Presence of Fixed Obstacles 1971:8.
[6] C.-T. Lo, F.C. Laabs, B. Narasimhan, Interfacial adhesion mechanisms in incompatible semicrystalline polymer systems, J. Polym. Sci. B Polym. Phys. 42 (2004) 2667-2679. https://doi.org/10.1002/polb.20148
[7] S.F. Costa, F.M. Duarte, J.A. Covas, Estimation of filament temperature and adhesion development in fused deposition techniques, J. Mater. Process. Technol. 245 (2017) 167-179. https://doi.org/10.1016/j.jmatprotec.2017.02.026
[8] A. Greco, A. Maffezzoli, Statistical and kinetic approaches for linear low-density polyethylene melting modeling, J. Appl. Polym. Sci. 89 (2003) 289-295. https://doi.org/10.1002/app.12079
[9] E. Barocio, B. Brenken, A. Favaloro, M. Ramirez, J. Ramirez, R.B. Pipes, Prediction of the Degree of Bonding in the Extrusion Deposition Additive Manufacturing Process of Semi-Crystalline Polymer Composites n.d.:11.
[10] C. Carotenuto, L. Grassia, L.P. Paduano, M. Minale, Non-Isothermal Crystallization Kinetics of an Ethylene-Vinyl-Acetate. II. Time-Temperature-Crystallinity-Superposition, Polym. Eng. Sci. 59 (2019) 2550-2556. https://doi.org/10.1002/pen.25242
[11] Minale M, Carotenuto C, Paduano LP, Grassia L. Nonisothermal Crystallization Kinetics of an Ethylene-Vinyl-Acetate: I Calorimetry Versus Rheology. Polymer Engineering & Science 59 (2019) 2557–63. https://doi.org/10.1002/pen.25248
[12] R. Pantani, V. Speranza, G. Titomanlio, Evolution of iPP Relaxation Spectrum during Crystallization, Macromol. Theor. Simul. 23 (2014) 300-306. https://doi.org/10.1002/mats.201300147
[13] S. Bakrani Balani, F. Chabert, V. Nassiet, A. Cantarel, Influence of printing parameters on the stability of deposited beads in fused filament fabrication of poly(lactic) acid. Additive Manuf. 25 (2019) 112–121. https://doi.org/10.1016/j.addma.2018.10.012
[14] A.R. Zanjanijam, I. Major, J.G. Lyons, U. Lafont, D.M. Devine, Fused Filament Fabrication of PEEK: A Review of Process-Structure-Property Relationships, Polym. 12 (2020) 1665. https://doi.org/10.3390/polym12081665
[15] T. Baumard, E.E. Rassy, N. Boyard, S.L. Corre, J.L. Bailleul, J. Bikard, et al. Caractérisation des cinétiques de cristallisation du poly(éther éther cétone) (PEEK) par mesure de la chaleur spécifique en calorimétrie différentielle à balayage rapide Congrès Français de Thermique SFT 2022, May 2022, Valenciennes, France. hal-03761852.
[16] K. Nakamura, T. Watanabe, K. Katayama, T. Amano, Some aspects of nonisothermal crystallization of polymers. I. Relationship between crystallization temperature, crystallinity, and cooling conditions, J. Appl. Polym. Sci. 16 (1972) 1077-1091. https://doi.org/10.1002/app.1972.070160503
[17] M. Avrami, Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III, J. Chem. Phys. 9 (1941) 177–184. https://doi.org/10.1063/1.1750872
[18] C. Nicodeau. Continuous welding modeling of thermoplastic matrix composites. Engineering Sciences [physics]. Arts et Métiers ParisTech, 2005. English. NNT: 2005ENAM0018. pastel-00001506
[19] R.P. Wool, Polymer interfaces: Structure and strength, 1995.
[20] G. Lamberti, G.W.M. Peters, G. Titomanlio, Crystallinity and Linear Rheological Properties of Polymers, Int. Polym. Process. 22 (2007) 303-310. https://doi.org/10.3139/217.2006
[21] M.L. Williams, R.F. Landel, J.D. Ferry, The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming Liquids, J. Am. Chem. Soc. 77 (1955) 3701–3707. https://doi.org/10.1021/ja01619a008