Process-informed material model selection
CONDE Mariana, COPPIETERS Sam, ANDRADE-CAMPOS António
download PDFAbstract. The efficient development of metal products with high quality usually requires realistic numerical simulations before the manufacturing procedure. The choice of the constitutive model has a considerable influence on the predicted material behavior’s description. Several material constitutive models have been proposed to describe different mechanical phenomena. However, its selection is a labored task that requires expertise. This lack of knowledge can lead to errors in the numerical predictions and, consequently, large costs and delays in the manufacturing procedure. To overcome this problem, an automatic material model selection tool is necessary. This work aims to compare the impact of different constitutive models and their features on the simulation of a forming process and develop a rational and systematic strategy for model selection. The approach focuses on the study of a hole expansion test using Abaqus and a statistical analysis of variance (ANOVA). It was possible to establish a ranking for the importance of the types of models that can help with model selection decision-making and efficient parameter calibration for accurate predictions.
Keywords
Material Model Selection, Numerical Simulation, Hole Expansion Test, Analysis of Variance (ANOVA)
Published online 4/19/2023, 10 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: CONDE Mariana, COPPIETERS Sam, ANDRADE-CAMPOS António, Process-informed material model selection, Materials Research Proceedings, Vol. 28, pp 1369-1378, 2023
DOI: https://doi.org/10.21741/9781644902479-148
The article was published as article 148 of the book Material Forming
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] R. Jafari Nedoushan, M. Farzin, D. Banabic, Simulation of hot forming processes: Using cost effective micro-structural constitutive models, Int. J. Mech. Sci. 85 (2014) 196-204. https://doi.org/10.1016/j.ijmecsci.2014.04.026
[2] D.S. Connolly, C.P. Kohar, K. Inal, A novel crystal plasticity model incorporating transformation induced plasticity for a wide range of strain rates and temperatures, Int. J. Plast. 152 (2022) 103188. https://doi.org/10.1016/j.ijplas.2021.103188.
[3] D. Banabic, F. Barlat, O.Cazacu, T. Kuwabara, Advances in anisotropy of plastic behaviour and formability of sheet metals, Int. J. Mater. Form. 13 (2020) 749-787. https://doi.org/10.1007/s12289-020-01580-x
[4] A. Taherizadeh, D.E. Green, J.W. Yoon, Anisotropic hardening model based on non- associated flow rule and combined nonlinear kinematic hardening for sheet materials, AIP Conf Proc 1567 (2013) 496. https://doi.org/10.1063/1.4850020
[5] H.W. Swift, Plastic instability under plane stress, J. Mech. Phys. Solid. 1 (1952) 1-18. https://doi.org/10.1016/0022-5096(52)90002-1
[6] F. Barlat, J.C. Brem, J.W. Yoon, K. Chung, R.E. Dick, D.J. Lege, F. Pourboghrat, S.-H. Choi, E. Chu, Plane stress yield function for aluminum alloy sheets – Part 1: Theory, Int. J. Plast. 19 (2003) 1297-1319. https://doi.org/10.1016/S0749-6419(02)00019-0
[7] D. Banabic, F. Barlat, O. Cazacu, T. Kuwabara, Advances in anisotropy and formability, Int. J. Mater. Form. 3 (2010) 165-189. https://doi.org/10.1007/s12289-010-0992-9.
[8] A.C.S. Reddy, C.B. Reddy, D.V. Paleswar, Review on Different Hardening Models for Computation of Deep Drawing Process Simulation n.d. https://doi.org/10.31224/osf.io/4a28r
[9] D. Banabic, Sheet Metal Forming Processes – Constitutive Modelling and Numerical Simulation, Spinger, 2010. https://doi.org/10.1007/978-3-540-88113-1
[10] S. Ben-Elechi, M. Khelifa, R. Bahloul, Sensitivity of friction coefficients, material constitutive laws and yield functions on the accuracy of springback prediction for an automotive part, Int. J. Mater. Form. 14 (2021) 323-340. https://doi.org/10.1007/s12289-020-01608-2
[11] Y. Hou, J. Min, J. Lin, Z. Liu, J.E. Carsley, B. Thomas, Springback prediction of sheet metals using improved material models, Procedia Eng. 207 (2017) 173-178. https://doi.org/10.1016/j.proeng.2017.10.757
[12] J. Lin, Y. Hou, J. Min, Effect of constitutive model on springback prediction of MP980 and AA6022-T4, Int. J. Mater. Form. 13 (2020) 1-13. https://doi.org/10.1007/s12289-018-01468-x
[13] K. Chatziioannou, Y. Huang, S.A. Karamanos, Simulation of Cyclic Loading on Pipe Elbows Using Advanced Plane-Stress Elastoplasticity Models, J. Press. Vessel. Technol. 143 (2021) 021501-10. https://doi.org/10.1115/1.4047876
[14] V. Prakash, D.R. Kumar, A. Horn, H. Hagenah, M. Merklein, Modeling material behavior of AA5083 aluminum alloy sheet using biaxial tensile tests and its application in numerical simulation of deep drawing, Int. J. Adv. Manuf. Technol. 106 (2020) 1133-1148. https://doi.org/10.1007%2Fs00170-019-04587-0
[15] Z. Tuo, Z. Yue, X. Zhuang, X. Min, H. Badreddine, L. Qiu, Comparison of two uncoupled ductile damage initiation models applied to DP900 steel sheet under various loading paths, Int. J. Damage Mech. 30 (2021) 25-45. https://doi.org/10.1177/1056789520945002
[16] M. Conde, Y. Zhang, J. Henriques, S. Coppieters, A. Andrade-Campos, Design and validation of a heterogeneous interior notched specimen for inverse material parameter identification, Finite Elem. Anal. Des. 214 (2023) 103866. https://doi.org/10.1016/j.finel.2022.103866
[17] Dassault Systèmes. Abaqus 6.14 Online Documentation 2014.
[18] H. Scheffe, The analysis of variance, Vol. 72, John Wiley & Sons, 1999.
[19] P. Teixeira, A. Andrade-Campos, A.D. Santos, F.M.A. Pires, J.M.A. César de Sá, Optimization strategies for springback compensation in sheet metal forming. First ECCOMAS Young Investig, Conf., Aveiro, Portugal, 2012, p. 24-27. https://doi.org/10.1016/B978-0-85709-481-0.00003-3
[20] A. Maia, E. Ferreira, M.C. Oliveira, L.F. Menezes, A. Andrade-Campos, Numerical optimization strategies for springback compensation in sheet metal forming, Comput. Meth. Prod. Eng. Res. Dev. (2017) 51-82. https://doi.org/10.1016/B978-0-85709-481-0.00003-3
[21] H. Naceur, Y.Q. Guo, S. Ben-Elechi, Response surface methodology for design of sheet forming parameters to control springback effects, Comput. Struct. 84 (2006) 1651-1663. https://doi.org/10.1016/j.compstruc.2006.04.005
[22] S. Zhang, L. Léotoing, D. Guines, S. Thuillier, Potential of the Cross Biaxial Test for Anisotropy Characterization Based on Heterogeneous Strain Field, Exp. Mech. 55 (2015) 817-835. https://doi.org/10.1007/s11340-014-9983-y
[23] J. Ha, S. Coppieters, Y.P. Korkolis, International Journal of Mechanical Sciences On the expansion of a circular hole in an orthotropic elastoplastic thin sheet, Int. J. Mech. Sci. 182 (2020) 105706. https://doi.org/10.1016/j.ijmecsci.2020.105706
[24] H. Takizawa, T. Kuwabara, K. Oide, J. Yoshida, Development of the subroutine library “UMMDp” for anisotropic yield functions commonly applicable to commercial FEM codes, J. Phys. Conf. Ser. 734 (2016). https://doi.org/10.1088/1742-6596/734/3/032028
[25] E. Voce, The Relationship between Stress and Strain for Homogeneous Deformation, J. Inst. Met. (1948) 537-562.
[26] P.J. Armstrong, C.O. Frederick, A Mathematical Representation of the Multi Axial Bauschinger Effect, Mater. High Temp. 24 (2007) 1-26. https://doi.org/10.1179/096034007X207589
[27] F. Ozturk, S. Toros, S. Kilic, Effects of anisotropic yield functions on prediction of forming limit diagrams of DP600 advanced high strength steel, Procedia Eng. 81 (2014) 760-765. https://doi.org/10.1016/j.proeng.2014.10.073
[28] J. Fu, F. Barlat, J. Kim, F. Pierron, Identification of nonlinear kinematic hardening constitutive model parameters using the virtual fields method for advanced high strength steels, Int. J. Solid. Struct. 102-103 (2016) 30-43. https://doi.org/https://doi.org/10.1016/j.ijsolstr.2016.10.020
[29] M. Iadicola, Data for Numisheet 2020 uniaxial tensile and tension/compression tests, Natl. Inst. Stand. Technol., 2020. https://doi.org/10.18434/M32202
[30] S.M. Mirfalah-Nasiri, A. Basti, R. Hashemi Forming limit curves analysis of aluminum alloy considering the through-thickness normal stress, anisotropic yield functions and strain rate, Int. J. Mech. Sci. 117 (2016) 93-101. https://doi.org/10.1016/j.ijmecsci.2016.08.011
[31] Addinsoft. XLSTAT n.d. https://www.xlstat.com/en/ (accessed November 21, 2022).
[32] J.H. Schmitt, E. Aernoudt, B. Baudelet, Yield loci for polycrystalline metals without texture, Mater. Sci. Eng. 75 (1985) 13-20. https://doi.org/https://doi.org/10.1016/0025-5416(85)90173-9