Manufacturing of graded grinding wheels for flute grinding
DENKENA Berend, BERGMANN Benjamin, RAFFALT Daniel
download PDFAbstract. In this paper, two different methods for manufacturing of graded grinding wheels for two different metal bonds are presented. One method is based on the use of a mask and manual moulding and the other on a height-adjustable holder for moulding. For this purpose, a brittle and a ductile bronze bond are compared. The graded grinding wheels are fabricated through sintering with Field Assisted Sintering Technology (FAST). An analysis of the grain distribution is used to demonstrate the reproducibility of the manufacturing methodology. For analysis, light microscope images of cross-sections of the abrasive layers are taken. The grain distribution is determined using image processing software and a greyscale method. Finally, the advantages of each method are compared. As a result, both manufacturing methods are evaluated in terms of precision, feasibility and efficiency. From this, a recommendation on the implementation and further development of the methods is derived. This method enables the manufacturing of graded grinding wheels for an effective reduction of wear differences for grinding cemented carbide end mill cutters.
Keywords
Graded Grinding Wheels, Field-Assisted-Sintering, Flute Grinding, Cemented Carbide
Published online 4/19/2023, 10 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: DENKENA Berend, BERGMANN Benjamin, RAFFALT Daniel, Manufacturing of graded grinding wheels for flute grinding, Materials Research Proceedings, Vol. 28, pp 1213-1222, 2023
DOI: https://doi.org/10.21741/9781644902479-132
The article was published as article 132 of the book Material Forming
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] H. Ortner, H. Kolaska, P. Ettmayer, The history of the technological progress of hardmetals, Int. J. Refract. Met. Hard Mater. 44 (2014) 148-159. https://doi.org/10.1016/j.ijrmhm.2013.07.014
[2] B. Denkena, Lasertechnologie für die Generierung und Messung der Mikrogeometrie an Zerspanwerkzeugen, Ergebnisbericht des BMBF Verbundprojektes GEOSPAN, 2005.
[3] K. Dröder, B. Karpuschweski, E. Uhlmann, A comparative analysis of ceramic and cemented carbide end mills, Prod. Eng. 14 (2020) 355-364. https://doi.org/10.1007/s11740-020-00966-9
[4] S. Malkin, C. Guo, Grinding technology: theory and application of machining with abrasives, 2nd Edition, Industrial Press Inc, 2008. ISBN: 9780831132477, 0831132477
[5] J. Mayr, R. Barbist, Untersuchung und Bewertung der Schleifbarkeit von Hartmetall, Der Stahlformenbauer 31 (2014) 74 – 79.
[6] E. Uhlmann, C. Hübert, Tool grinding of end mill cutting tools made from high performance ceramics and cemented carbides, CIRP Annals 60 (2011) 359-362. https://doi.org/10.1016/j.cirp.2011.03.106
[7] T. Heymann, Gezielte Nut- und Schneidkantenpräparation von Vollhartmetall – Zerspanwerkzeugen durch Polierschleifen, Spanende Fertigung / Prozesse – Innovation – Werkstoffe, Vulkan-Verlag Essen 6. Ausgabe, 2012, pp. 104-110.
[8] B. Denkena, A. Krödel, R. Lang, Fabrication and use of Cu-Cr-diamond composites for the application in deep feed grinding of tungsten carbide, Diam. Relat. Mater. 120 (2021). https://doi.org/10.1016/j.diamond.2021.108668
[9] B. Bergmann, P. Dzierzawa, Understanding the properties of bronze-bonded diamond grinding wheels on process behaviour, CIRP Annals 71 (2022) 293-296. https://doi.org/10.1016/j.cirp.2022.04.014
[10] P. Brevern, Untersuchungen zum Tiefschleifen von Hartmetall unter besonderer Berücksichtigung von Schleiföl als Kühlschmierstoff. VDI Fortschrittsberichte Reihe 2, 1996.
[11] T. Friemuth, Schleifen hartstoffverstärkter keramischer Werkzeuge. Dr.-Ing. Dissertation, Universität Hannover, 1999.
[12] F.L. Kempf, A. Bouabid, P. Dzierzawa, T. Grove, B. Denkena, Methods for the analysis of grinding wheel properties, 7. WGP Jahreskongress, 2017, pp. 87-96.
[13] E. Uhlmann, N. Schröer, A. Muthulingam, B. Gülzow, Increasing the productivity and quality of flute grinding processes through the use of layered grinding wheels, Procedia Manuf. 33 (2019) 754-761. https://doi.org/10.1016/j.promfg.2019.04.095
[14] B. Denkena, B. Bergmann, D. Raffalt, Operational behaviour of graded diamond grinding wheels for end mill cutter machining, SN Appl. Sci. 4 (2022). https://doi.org/10.1007/s42452-022-04970-9
[15] B. Denkena, B. Bergmann, D. Raffalt, Manufacturing Of Graded Grinding Layers, World PM2022 – Session 37: Hard metals, cermets and diamond tools – Processing II, 2022.