Fractional diffusion of membrane receptors in endocytosis pathway
Gianmarco Nuzzo, Emanuela Bologna, Kaushik Dayal, Massimiliano Zingales
download PDFAbstract. In this paper the diffusion model representing the motion of membrane receptors with respect to virus endocytosis is considered in the context of applied mechanics. The unexpected behaviour of the receptor density that moves from higher concentrations in the unbound phase to lower concentration at the right of the virus surface is accounted for introducing a mechanical drift term in the governing equation so that the difference of concentrations, higher in the bounded phase and lower in the unbounded phase is accounted for in the receptor motion. Additionally, a non-gaussian model of diffusion has been introduced in terms of fractional generalization of the Fick law.
Keywords
Endocytosis, Biomechanics, Fractional Calculus, Stefan Problem, Phase Transformation
Published online 3/17/2022, 6 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: Gianmarco Nuzzo, Emanuela Bologna, Kaushik Dayal, Massimiliano Zingales, Fractional diffusion of membrane receptors in endocytosis pathway, Materials Research Proceedings, Vol. 26, pp 305-310, 2023
DOI: https://doi.org/10.21741/9781644902431-50
The article was published as article 50 of the book Theoretical and Applied Mechanics
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] J. G. Joseph, & A. P. Liu (2020). Mechanical regulation of endocytosis: new insights and recent advances. Advanced biosystems, 4(5), 1900278. https://doi.org/10.1002/adbi.201900278
[2] J. Shang, Y. Wan, C. Luo, G. Ye, Q. Geng, A. Auerbach, & F. Li (2020). Cell entry mechanisms of SARS-CoV-2. Proceedings of the National Academy of Sciences, 117(21), 11727-11734. https://doi.org/10.1073/pnas.2003138117
[3] L. Deseri, P. Pollaci, M. Zingales, & K. Dayal (2016). Fractional hereditariness of lipid membranes: Instabilities and linearized evolution. journal of the mechanical behavior of biomedical materials, 58, 11-27. https://doi.org/10.1016/j.jmbbm.2015.09.021
[4] E. Bologna, M. Di Paola, K. Dayal, L. Deseri, & M. Zingales (2020). Fractional-order nonlinear hereditariness of tendons and ligaments of the human knee. Philosophical Transactions of the Royal Society A, 378(2172), 20190294. https://doi.org/10.1098/rsta.2019.0294
[5] G. Alaimo, V. Piccolo, A. Chiappini, M. Ferrari, D. Zonta, L. Deseri, & M. Zingales (2018). Fractional-order theory of thermoelasticicty. I: Generalization of the Fourier equation. Journal of Engineering Mechanics, 144(2), 04017164. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001394
[6] G. Alaimo, & M. Zingales (2015). Laminar flow through fractal porous materials: the fractional-order transport equation. Communications in Nonlinear Science and Numerical Simulation, 22(1-3), 889-902. https://doi.org/10.1016/j.cnsns.2014.10.005
[7] M. Zingales (2016). An exact thermodynamical model of power-law temperature time scaling. Annals of Physics, 365, 24-37. https://doi.org/10.1016/j.aop.2015.08.014
[8] M. Di Paola, & M. Zingales (2012). Exact mechanical models of fractional hereditary materials. Journal of Rheology, 56(5), 983-1004. https://doi.org/10.1122/1.4717492
[9] G. Alaimo, V. Piccolo, A. Cutolo, L. Deseri, M. Fraldi, & M. Zingales (2019). A fractional order theory of poroelasticity. Mechanics Research Communications, 100, 103395. https://doi.org/10.1016/j.mechrescom.2019.103395
[10] H. Gao, W. Shi, & L. B. Freund (2005). Mechanics of receptor-mediated endocytosis. Proceedings of the National Academy of Sciences, 102(27), 9469-9474. https://doi.org/10.1073/pnas.0503879102
[11] S. C. Gupta (2017). The classical Stefan problem: basic concepts, modelling and analysis with quasi-analytical solutions and methods (Vol. 45). Elsevier. https://doi.org/10.1016/B978-0-444-63581-5.00012-9
[12] R. Gorenflo, A. A. Kilbas, F. Mainardi, & S. V. Rogosin (2020). Mittag-Leffler functions, related topics and applications (p. 540). New York, NY, USA: Springer. https://doi.org/10.1007/978-3-662-61550-8