A moving cohesive interface model for brittle fracture propagation

A moving cohesive interface model for brittle fracture propagation

Umberto De Maio, Fabrizio Greco, Paolo Lonetti, Paolo Nevone Blasi, Andrea Pranno

download PDF

Abstract. In this work, an advanced numerical model, based on the cohesive zone approach and the moving mesh technique, is proposed to simulate fracture propagation in quasi-brittle materials. In particular, the proposed numerical procedure consists of two stages. In the former one, according to the inter-element crack approach, once a suitable stress criterion for fracture onset is satisfied, a mesh boundary, representing the crack segment, is selected and aligned along the crack propagation direction by using the well-known moving mesh technique. In the latter one a zero-thickness interface cohesive element, equipped with a traction-separation law, is inserted on-the-fly along the previously selected mesh boundary, in order to describe the nonlinear fracture process. Comparisons with available experimental and numerical results have highlighted the effectiveness and the reliability of the proposed model in the prediction of the brittle fracture phenomenon.

Keywords
Cohesive Zone Model, Moving Mesh Technique, Fracture Propagation, Quasi-Brittle Materials

Published online 3/17/2022, 6 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Umberto De Maio, Fabrizio Greco, Paolo Lonetti, Paolo Nevone Blasi, Andrea Pranno, A moving cohesive interface model for brittle fracture propagation, Materials Research Proceedings, Vol. 26, pp 71-76, 2023

DOI: https://doi.org/10.21741/9781644902431-12

The article was published as article 12 of the book Theoretical and Applied Mechanics

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] R. de Borst, J.J.C. Remmers, A. Needleman, M.-A. Abellan, Discretevs smeared crack models for concrete fracture: bridging the gap, Int. J. Numer. Anal. Meth. Geomech. 28 (2004) 583–607. https://doi.org/10.1002/nag.374
[2] A. Hillerborg, M. Modéer, P.-E. Petersson, Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements, Cement and Concrete Research. 6 (1976) 773–781. https://doi.org/10.1016/0008-8846(76)90007-7
[3] U. De Maio, D. Cendón, F. Greco, L. Leonetti, P. Nevone Blasi, J. Planas, Investigation of concrete cracking phenomena by using cohesive fracture-based techniques: A comparison between an embedded crack model and a refined diffuse interface model, Theoretical and Applied Fracture Mechanics. 115 (2021) 103062. https://doi.org/10.1016/j.tafmec.2021.103062
[4] J. Červenka, V. Červenka, S. Laserna, On crack band model in finite element analysis of concrete fracture in engineering practice, Engineering Fracture Mechanics. 197 (2018) 27–47. https://doi.org/10.1016/j.engfracmech.2018.04.010
[5] A. Pascuzzo, A. Yudhanto, M. Alfano, G. Lubineau, On the effect of interfacial patterns on energy dissipation in plastically deforming adhesive bonded ductile sheets, International Journal of Solids and Structures. 198 (2020) 31–40. https://doi.org/10.1016/j.ijsolstr.2020.04.001
[6] D. Bruno, F. Greco, P. Lonetti, Computation of Energy Release Rate and Mode Separation in Delaminated Composite Plates by Using Plate and Interface Variables, Mechanics of Advanced Materials and Structures. 12 (2005) 285–304. https://doi.org/10.1080/15376490590953563
[7] F. Greco, D. Gaetano, L. Leonetti, P. Lonetti, A. Pascuzzo, A. Skrame, Structural and seismic vulnerability assessment of the Santa Maria Assunta Cathedral in Catanzaro (Italy): classical and advanced approaches for the analysis of local and global failure mechanisms, Frattura Ed Integrità Strutturale. 60 (2022) 464–487. https://doi.org/10.3221/IGF-ESIS.60.32
[8] A. Pascuzzo, F. Greco, L. Leonetti, P. Lonetti, A. Pranno, C. Ronchei, Investigation of mesh dependency issues in the simulation of crack propagation in quasi‐brittle materials by using a diffuse interface modeling approach, Fatigue Fract Eng Mat Struct. 45 (2022) 801–820. https://doi.org/10.1111/ffe.13635
[9] U. De Maio, F. Greco, L. Leonetti, R. Luciano, P. Nevone Blasi, S. Vantadori, A refined diffuse cohesive approach for the failure analysis in quasibrittle materials—part I: Theoretical formulation and numerical calibration, Fatigue Fract Eng Mater Struct. 43 (2020) 221–241. https://doi.org/10.1111/ffe.13107
[10] U. De Maio, F. Greco, L. Leonetti, R. Luciano, P. Nevone Blasi, S. Vantadori, A refined diffuse cohesive approach for the failure analysis in quasibrittle materials—part II: Application to plain and reinforced concrete structures, Fatigue Fract Eng Mater Struct. 42 (2019) 2764–2781. https://doi.org/10.1111/ffe.13115
[11] U. De Maio, F. Greco, L. Leonetti, P. Nevone Blasi, A. Pranno, An investigation about debonding mechanisms in FRP-strengthened RC structural elements by using a cohesive/volumetric modeling technique, Theoretical and Applied Fracture Mechanics. 117 (2022) 103199. https://doi.org/10.1016/j.tafmec.2021.103199
[12] E. Benvenuti, N. Orlando, Failure of FRP-strengthened SFRC beams through an effective mechanism-based regularized XFEM framework, Composite Structures. 172 (2017) 345–358. https://doi.org/10.1016/j.compstruct.2017.02.099
[13] F. Greco, L. Leonetti, U. De Maio, S. Rudykh, A. Pranno, Macro- and micro-instabilities in incompressible bioinspired composite materials with nacre-like microstructure, Composite Structures. 269 (2021) 114004. https://doi.org/10.1016/j.compstruct.2021.114004
[14] F. Greco, L. Leonetti, C.M. Medaglia, R. Penna, A. Pranno, Nonlinear compressive failure analysis of biaxially loaded fiber reinforced materials, Composites Part B: Engineering. 147 (2018) 240–251. https://doi.org/10.1016/j.compositesb.2018.04.006
[15] F. Greco, P. Lonetti, R. Luciano, P. Nevone Blasi, A. Pranno, Nonlinear effects in fracture induced failure of compressively loaded fiber reinforced composites, Composite Structures. 189 (2018) 688–699. https://doi.org/10.1016/j.compstruct.2018.01.014
[16] A. Pranno, F. Greco, L. Leonetti, P. Lonetti, R. Luciano, U. De Maio, Band gap tuning through microscopic instabilities of compressively loaded lightened nacre-like composite metamaterials, Composite Structures. 282 (2022) 115032. https://doi.org/10.1016/j.compstruct.2021.115032
[17] F. Zhang, W. Huang, X. Li, S. Zhang, Moving mesh finite element simulation for phase-field modeling of brittle fracture and convergence of Newton’s iteration, Journal of Computational Physics. 356 (2018) 127–149. https://doi.org/10.1016/j.jcp.2017.11.033
[18] D. Ammendolea, F. Greco, P. Lonetti, R. Luciano, A. Pascuzzo, Crack propagation modeling in functionally graded materials using Moving Mesh technique and interaction integral approach, Composite Structures. 269 (2021) 114005. https://doi.org/10.1016/j.compstruct.2021.114005
[19] A. Pascuzzo, F. Greco, P. Lonetti, D. Ammendolea, Dynamic fracture analysis in quasi-brittle materials via a finite element approach based on the combination of the ALE formulation and M-integral method, Engineering Failure Analysis. (2022) 106627. https://doi.org/10.1016/j.engfailanal.2022.106627
[20] J.G. Rots, Computational modeling of concrete fracture, Doctoral thesis, TU Delft, 1988.
[21] A. Pranno, F. Greco, P. Lonetti, R. Luciano, U. De Maio, An improved fracture approach to investigate the degradation of vibration characteristics for reinforced concrete beams under progressive damage, International Journal of Fatigue. 163 (2022) 107032. https://doi.org/10.1016/j.ijfatigue.2022.107032
[22] U. De Maio, F. Greco, L. Leonetti, P. Nevone Blasi, A. Pranno, A cohesive fracture model for predicting crack spacing and crack width in reinforced concrete structures, Engineering Failure Analysis. 139 (2022) 106452. https://doi.org/10.1016/j.engfailanal.2022.106452
[23] F. Greco, L. Leonetti, A. Pranno, S. Rudykh, Mechanical behavior of bio-inspired nacre-like composites: A hybrid multiscale modeling approach, Composite Structures. 233 (2020) 111625. https://doi.org/10.1016/j.compstruct.2019.111625
[24] F. Greco, L. Leonetti, P. Lonetti, R. Luciano, A. Pranno, A multiscale analysis of instability-induced failure mechanisms in fiber-reinforced composite structures via alternative modeling approaches, Composite Structures. 251 (2020) 112529. https://doi.org/10.1016/j.compstruct.2020.112529
[25] F. Greco, L. Leonetti, R. Luciano, A multiscale model for the numerical simulation of the anchor bolt pull-out test in lightweight aggregate concrete, Construction and Building Materials. 95 (2015) 860–874. https://doi.org/10.1016/j.conbuildmat.2015.07.170