Multibody dynamics modeling of drivetrain components: On the caged-roller dynamics of centrifugal pendulum vibration absorbers
Mattia Cera, Marco Cirelli, Luca D’Angelo, Ettore Pennestrì, Pier Paolo Valentini
download PDFAbstract. Centrifugal pendulum absorbers are passive dampers mainly employed nowadays to attenuate torsional vibrations in modern drivetrains to reduce fuel consumption and CO2 emissions. The absorber is linked to the drivetrain by means of a higher kinematic joint composed of slots and rollers, termed caged-roller joint. This work aims to investigate the contact between the rollers and the slots through multibody dynamics simulations. As a result, the sliding between the profiles, usually neglected in the design model of the caged-roller joint, is assessed and an estimate of the power loss is provided.
Keywords
Centrifugal Pendulum Vibration Absorbers, Multibody Dynamics Contact And Friction Models, Caged-Roller Joint, Higher Path Curvature Analysis
Published online 3/17/2022, 6 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: Mattia Cera, Marco Cirelli, Luca D’Angelo, Ettore Pennestrì, Pier Paolo Valentini, Multibody dynamics modeling of drivetrain components: On the caged-roller dynamics of centrifugal pendulum vibration absorbers, Materials Research Proceedings, Vol. 26, pp 641-646, 2023
DOI: https://doi.org/10.21741/9781644902431-103
The article was published as article 103 of the book Theoretical and Applied Mechanics
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] A. Kooy and R. Seebacher. Best-in-class dampers for every driveline concept. Schaeffler Symposium, (2018)
[2] J. P. Den Hartog. Mechanical vibrations, fourth edition. J. R. Aeronaut. Soc. 61 (554) (1957).
[3] H.H. Denman, Tautochronic bifilar pendulum torsion absorbers for reciprocating engines, J. Sound Vib. 159 (2) (1992). https://doi.org/10.1016/0022-460X(92)90035-V
[4] C.P. Chao, S.W. Shaw, C.T. Lee, Stability of the unison response for a rotating system with multiple tautochronic pendulum vibration absorbers, J. Appl. Mech. 64 (1) (1997) 149–156. https://doi.org/10.1115/1.2787266
[5] A.S. Alsuwaiyan and S.W. Shaw. Performance and dynamic stability of general-path centrifugal pendulum vibration absorbers. J. Sound Vib., 252(5) (2002). https://doi.org/10.1006/jsvi.2000.3534
[6] J. Mayet, H. Ulbrich, First-order optimal linear and nonlinear detuning of centrifugal pendulum vibration absorbers, J. Sound Vib. 335 (2015) 34–54. https://doi.org/10.1016/j.jsv.2014.09.017
[7] M. Cirelli, M. Cera, E. Pennestrì, P.P. Valentini, Nonlinear design analysis of centrifugal pendulum vibration absorbers: an intrinsic geometry-based framework, Nonlinear Dynam. 102 (3) (2020) 1297–1318. https://doi.org/10.1007/s11071-020-06035-1
[8] M. Cera, M. Cirelli, E. Pennestrì, and P. P. Valentini. Design analysis of torsichrone centrifugal pendulum vibration absorbers. Nonlinear Dynam. 104 (2) (2021) 1023–1041. https://doi.org/10.1007/s11071-021-06345-y
[9] M. Cera, M. Cirelli, E. Pennestrì, P.P. Valentini, Nonlinear dynamics of torsichrone CPVA with synchroringed form closure constraint, Nonlinear Dynam.105 (3) (2021) 2739–2756. https://doi.org/10.1007/s11071-021-06732-5
[10] E.R. Gomez, I.L. Arteaga, L. Kari, Normal-force dependent friction in centrifugal pendulum vibration absorbers: Simulation and experimental investigations, J. Sound Vib. 492 (2021). https://doi.org/10.1016/j.jsv.2020.115815
[11] O. Bauchau, J. Rodriguez, and S.Y. Chen. Modeling the bifilar pendulum using nonlinear, flexible multibody dynamics. J. American Helicopter Society 48 (2003). https://doi.org/10.4050/JAHS.48.53
[12] M. Cera, M. Cirelli, E. Pennestrì, P.P. Valentini, The kinematics of curved profiles mating with a caged idle roller – higher-path curvature analysis, Mech. Mach. Theory 164 (2021). https://doi.org/10.1016/j.mechmachtheory.2021.104414
[13] J. Mayet, Effective and robust rocking centrifugal pendulum vibration absorbers, J. Sound Vibr. 527 (2022). https://doi.org/10.1016/j.jsv.2022.116821
[14] M. Cera, M. Cirelli, E. Pennestrì, P.P. Valentini, Design and comparison of centrifugal dampers modern architectures: The influence of roller kinematics on tuning conditions and absorbers nonlinear dynamics, Mech. Mach. Theory 174 (2022). https://doi.org/10.1016/j.mechmachtheory.2022.104876
[15] P. Flores, Contact mechanics for dynamical systems: a comprehensive review. Mult. Syst. Dynam., 54(2) (2021). https://doi.org/10.1007/s11044-021-09803-y
[16] C. M. Pereira, A. L. Ramalho, J. A. Ambrósio, A critical overview of internal and external cylinder contact force models, Nonlinear Dynam. 63 (2011). https://doi.org/10.1007/s11071-010-9830-3
[17] M. Cera, E. Pennestrì, The mechanical generation of planar curves by means of point trajectories, line and circle envelopes: a unified treatment of the classic and generalized Burmester problem, Mech. Mach. Theory 142 (2019). https://doi.org/10.1016/j.mechmachtheory.2019.103580
[18] F. Freudenstein, L.S. Woo, On the curves of synthesis in plane instantaneous kinematics, in: M. Hetényi, W.G. Vincenti (Eds.), Applied Mechanics. International Union of Theoretical and Applied Mechanics, Springer (1969)
[19] J. Choi, H. S. Ryu, C. W. Kim, and J. H. Choi. An efficient and robust contact algorithm for a compliant contact force model between bodies of complex geometry. Mult. Syst. Dynam., 23(1) (2009). https://doi.org/10.1007/s11044-009-9173-3
[20] H. Y. Cha, J. Choi, H. S. Ryu, and J. H. Choi. Stick-slip algorithm in a tangential contact force model for multi-body system dynamics. J. Mech. Science and Technology, 25(7) (2011). https://doi.org/10.1007/s12206-011-0504-y
[21] E. Pennestrì, V. Rossi, P. Salvini, and P. P. Valentini. Review and comparison of dry friction force models. Nonlinear Dynam., 83(4) (2015). https://doi.org/10.1007/s11071-015-2485-3